Answer :
To find the sum of the polynomials, let's go through the given expression step by step:
1. Understand the Expression:
- The given polynomials are [tex]\((7x^3 - 4x^2)\)[/tex] and [tex]\((2x^3 - 4x^2)\)[/tex].
2. Add the Like Terms:
- Combine the [tex]\(x^3\)[/tex] terms:
[tex]\[
7x^3 + 2x^3 = 9x^3
\][/tex]
- Combine the [tex]\(x^2\)[/tex] terms:
[tex]\[
-4x^2 + (-4x^2) = -8x^2
\][/tex]
3. Write the Resulting Polynomial:
- Combine all parts to form the sum:
[tex]\[
9x^3 - 8x^2
\][/tex]
Thus, the sum of the polynomials [tex]\((7x^3 - 4x^2) + (2x^3 - 4x^2)\)[/tex] is:
[tex]\[
9x^3 - 8x^2
\][/tex]
This matches the choice [tex]\(9x^3 - 8x^2\)[/tex].
1. Understand the Expression:
- The given polynomials are [tex]\((7x^3 - 4x^2)\)[/tex] and [tex]\((2x^3 - 4x^2)\)[/tex].
2. Add the Like Terms:
- Combine the [tex]\(x^3\)[/tex] terms:
[tex]\[
7x^3 + 2x^3 = 9x^3
\][/tex]
- Combine the [tex]\(x^2\)[/tex] terms:
[tex]\[
-4x^2 + (-4x^2) = -8x^2
\][/tex]
3. Write the Resulting Polynomial:
- Combine all parts to form the sum:
[tex]\[
9x^3 - 8x^2
\][/tex]
Thus, the sum of the polynomials [tex]\((7x^3 - 4x^2) + (2x^3 - 4x^2)\)[/tex] is:
[tex]\[
9x^3 - 8x^2
\][/tex]
This matches the choice [tex]\(9x^3 - 8x^2\)[/tex].