Answer :
We are given two polynomials:
[tex]$$
7x^3 - 4x^2 \quad \text{and} \quad 2x^3 - 4x^2.
$$[/tex]
To add these, follow these steps:
1. Identify and add the like terms.
- For the [tex]\( x^3 \)[/tex] terms:
[tex]$$7x^3 + 2x^3 = (7+2)x^3 = 9x^3.$$[/tex]
- For the [tex]\( x^2 \)[/tex] terms:
[tex]$$-4x^2 + (-4x^2) = (-4-4)x^2 = -8x^2.$$[/tex]
2. Write the sum of the polynomials.
Combining the results from step 1, the sum is:
[tex]$$
9x^3 - 8x^2.
$$[/tex]
Thus, the sum of the polynomials is
[tex]$$\boxed{9x^3-8x^2}.$$[/tex]
[tex]$$
7x^3 - 4x^2 \quad \text{and} \quad 2x^3 - 4x^2.
$$[/tex]
To add these, follow these steps:
1. Identify and add the like terms.
- For the [tex]\( x^3 \)[/tex] terms:
[tex]$$7x^3 + 2x^3 = (7+2)x^3 = 9x^3.$$[/tex]
- For the [tex]\( x^2 \)[/tex] terms:
[tex]$$-4x^2 + (-4x^2) = (-4-4)x^2 = -8x^2.$$[/tex]
2. Write the sum of the polynomials.
Combining the results from step 1, the sum is:
[tex]$$
9x^3 - 8x^2.
$$[/tex]
Thus, the sum of the polynomials is
[tex]$$\boxed{9x^3-8x^2}.$$[/tex]