Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the sum of [tex]\left(2x^4 + 5x^3 - 8x^2 - x + 10\right)[/tex] and [tex]\left(8x^4 - 4x^3 + x^2 - x + 2\right)[/tex]?

A. [tex]10x^4 + 9x^3 - 7x^2 - 2x + 12[/tex]

B. [tex]10x^8 + x^6 - 7x^4 - 2x^2 + 12[/tex]

C. [tex]10x^4 + x^3 - 9x^2 + 12[/tex]

D. [tex]10x^4 + x^3 - 7x^2 - 2x + 12[/tex]

E. [tex]10x^4 + x^3 - 9x^2 - 2x + 12[/tex]

Answer :

To find the sum of the polynomials [tex]\((2x^4 + 5x^3 - 8x^2 - x + 10)\)[/tex] and [tex]\((8x^4 - 4x^3 + x^2 - x + 2)\)[/tex], we simply add the corresponding coefficients from each polynomial. Let's break it down step-by-step:

1. Identify the coefficients:
- For [tex]\(x^4\)[/tex], we have [tex]\(2\)[/tex] from the first polynomial and [tex]\(8\)[/tex] from the second.
- For [tex]\(x^3\)[/tex], we have [tex]\(5\)[/tex] from the first polynomial and [tex]\(-4\)[/tex] from the second.
- For [tex]\(x^2\)[/tex], we have [tex]\(-8\)[/tex] from the first polynomial and [tex]\(1\)[/tex] from the second.
- For [tex]\(x\)[/tex], we have [tex]\(-1\)[/tex] from both polynomials.
- For the constant term, we have [tex]\(10\)[/tex] from the first polynomial and [tex]\(2\)[/tex] from the second.

2. Add the coefficients:
- [tex]\(x^4\)[/tex] term: [tex]\(2 + 8 = 10\)[/tex]
- [tex]\(x^3\)[/tex] term: [tex]\(5 - 4 = 1\)[/tex]
- [tex]\(x^2\)[/tex] term: [tex]\(-8 + 1 = -7\)[/tex]
- [tex]\(x\)[/tex] term: [tex]\(-1 - 1 = -2\)[/tex]
- Constant term: [tex]\(10 + 2 = 12\)[/tex]

3. Combine the results into the polynomial:
[tex]\[
10x^4 + 1x^3 - 7x^2 - 2x + 12
\][/tex]

The sum of the polynomials is [tex]\(10x^4 + x^3 - 7x^2 - 2x + 12\)[/tex].