High School

What is the simplest form of [tex]\left(4x^3+6x-7\right)+\left(3x^3-5x^2-5x\right)[/tex]?

A. [tex]7x^3-5x^2-x-7[/tex]
B. [tex]7x^3-5x^2+x-7[/tex]
C. [tex]7x^3+x^2-5x-7[/tex]
D. [tex]7x^6-4x^2-7[/tex]

Answer :

We start with the expression

[tex]$$
(4x^3 + 6x - 7) + (3x^3 - 5x^2 - 5x).
$$[/tex]

Step 1. Remove the parentheses

Since the sign before each parenthesis is positive, we can remove them without changing the signs:

[tex]$$
4x^3 + 6x - 7 + 3x^3 - 5x^2 - 5x.
$$[/tex]

Step 2. Group the like terms

Group the terms by the power of [tex]$x$[/tex]:

- For [tex]$x^3$[/tex]: [tex]$$4x^3 + 3x^3$$[/tex]
- For [tex]$x^2$[/tex]: [tex]$$- 5x^2$$[/tex]
- For [tex]$x$[/tex]: [tex]$$6x - 5x$$[/tex]
- Constant: [tex]$$-7$$[/tex]

Step 3. Combine the like terms

1. Cubic terms:
[tex]$$
4x^3 + 3x^3 = 7x^3.
$$[/tex]

2. Quadratic term:
[tex]$$
-5x^2 \quad \text{(only one term)}
$$[/tex]

3. Linear terms:
[tex]$$
6x - 5x = x.
$$[/tex]

4. Constant term:
[tex]$$
-7 \quad \text{(only one term)}
$$[/tex]

Step 4. Write the simplified expression

Putting it all together, we obtain

[tex]$$
7x^3 - 5x^2 + x - 7.
$$[/tex]

Thus, the simplest form of the given expression is

[tex]$$\boxed{7x^3 - 5x^2 + x - 7}.$$[/tex]

This corresponds to option B.