High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the remainder when [tex]3x^3 - 2x^2 + 4x - 3[/tex] is divided by [tex]x^2 + 3x + 3[/tex]?

A. 30
B. [tex]3x - 11[/tex]
C. [tex]28x - 36[/tex]
D. [tex]28x + 30[/tex]

Answer :

To find the remainder when the polynomial [tex]\(3x^3 - 2x^2 + 4x - 3\)[/tex] is divided by [tex]\(x^2 + 3x + 3\)[/tex], we can use polynomial long division. Here's a step-by-step explanation:

1. Set up the division: We are dividing [tex]\(3x^3 - 2x^2 + 4x - 3\)[/tex] by [tex]\(x^2 + 3x + 3\)[/tex].

2. First term division:
- Divide the leading term of the dividend ([tex]\(3x^3\)[/tex]) by the leading term of the divisor ([tex]\(x^2\)[/tex]):
[tex]\[
\frac{3x^3}{x^2} = 3x
\][/tex]
- Multiply the entire divisor [tex]\(x^2 + 3x + 3\)[/tex] by [tex]\(3x\)[/tex] and subtract the result from the dividend:
[tex]\[
\text{Multiply: } (x^2 + 3x + 3) \cdot 3x = 3x^3 + 9x^2 + 9x
\][/tex]
Subtract from the original polynomial:
[tex]\[
(3x^3 - 2x^2 + 4x - 3) - (3x^3 + 9x^2 + 9x) = -11x^2 - 5x - 3
\][/tex]

3. Next term division:
- Divide the new leading term ([tex]\(-11x^2\)[/tex]) by the leading term of the divisor ([tex]\(x^2\)[/tex]):
[tex]\[
\frac{-11x^2}{x^2} = -11
\][/tex]
- Multiply the entire divisor [tex]\(x^2 + 3x + 3\)[/tex] by [tex]\(-11\)[/tex] and subtract:
[tex]\[
\text{Multiply: } (x^2 + 3x + 3) \cdot (-11) = -11x^2 - 33x - 33
\][/tex]
Subtract this from the current polynomial:
[tex]\[
(-11x^2 - 5x - 3) - (-11x^2 - 33x - 33) = 28x + 30
\][/tex]

4. Remainder: Since the degree of the new polynomial [tex]\(28x + 30\)[/tex] is less than the degree of the divisor ([tex]\(x^2 + 3x + 3\)[/tex]), we stop here. The remainder is [tex]\(28x + 30\)[/tex].

Thus, when [tex]\(3x^3 - 2x^2 + 4x - 3\)[/tex] is divided by [tex]\(x^2 + 3x + 3\)[/tex], the remainder is [tex]\(\boxed{28x + 30}\)[/tex].