College

What is the product?

[tex]\[ \left(7x^2\right)\left(2x^3+5\right)\left(x^2-4x-9\right) \][/tex]

A. [tex]\( 14x^5-x^4-46x^3-58x^2-20x-45 \)[/tex]

B. [tex]\( 14x^6-56x^5-91x^4-140x^3-315x^2 \)[/tex]

C. [tex]\( 14x^7-56x^6-126x^5+35x^4-140x^3-315x^2 \)[/tex]

D. [tex]\( 14x^{12}-182x^6+35x^4-455x^2 \)[/tex]

Answer :

To solve the problem of finding the product of the expression [tex]\((7x^2)(2x^3+5)(x^2-4x-9)\)[/tex], we need to expand the expression step by step.

Here's how we can do it:

1. Identify the Product:
The given expression is [tex]\((7x^2)\cdot(2x^3+5)\cdot(x^2-4x-9)\)[/tex].

2. Step-by-Step Expansion:
- First, focus on the first two parts: [tex]\((7x^2)(2x^3 + 5)\)[/tex].
- Multiply [tex]\(7x^2\)[/tex] by each term inside the parentheses:
- [tex]\(7x^2 \cdot 2x^3 = 14x^5\)[/tex]
- [tex]\(7x^2 \cdot 5 = 35x^2\)[/tex]
- Result: [tex]\(14x^5 + 35x^2\)[/tex].

- Next, multiply this result by the third part: [tex]\((x^2 - 4x - 9)\)[/tex].
- Multiply [tex]\(14x^5\)[/tex] by each term in [tex]\((x^2 - 4x - 9)\)[/tex]:
- [tex]\(14x^5 \cdot x^2 = 14x^7\)[/tex]
- [tex]\(14x^5 \cdot -4x = -56x^6\)[/tex]
- [tex]\(14x^5 \cdot -9 = -126x^5\)[/tex]

- Multiply [tex]\(35x^2\)[/tex] by each term in [tex]\((x^2 - 4x - 9)\)[/tex]:
- [tex]\(35x^2 \cdot x^2 = 35x^4\)[/tex]
- [tex]\(35x^2 \cdot -4x = -140x^3\)[/tex]
- [tex]\(35x^2 \cdot -9 = -315x^2\)[/tex]

3. Combine Like Terms:
Now, add all the terms together:
- [tex]\(14x^7\)[/tex]
- [tex]\(-56x^6\)[/tex]
- [tex]\(-126x^5\)[/tex]
- [tex]\(+35x^4\)[/tex]
- [tex]\(-140x^3\)[/tex]
- [tex]\(-315x^2\)[/tex]

The combined result is:
[tex]\(14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2\)[/tex].

4. Match with Options:
This matches the third option from the given choices:
[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]

Therefore, the correct product of the expression is the third option.