College

6. Factor: [tex]6m^2 + 16m[/tex]

A. [tex]2m(3m + 8)[/tex]
B. [tex]2m(3m - 8m)[/tex]
C. [tex]2(3m^2 + 8m)[/tex]
D. Not factorable

7. Factor: [tex]56a^3 - 8a[/tex]

A. [tex]8a^2(56a^3 - 8a)[/tex]
B. [tex]8a^2(35a^2 - a)[/tex]
C. [tex]8a(7a^2 - 1)[/tex]
D. [tex]8a(7a^3 - a)[/tex]

8. Factor: [tex]2n^2 - 8n^3[/tex]

A. [tex]2n^2(n - 4n^2)[/tex]
B. [tex]2n^2(1 - 4n)[/tex]
C. [tex]3n(1 - 4n)[/tex]
D. [tex]2n^3(10 - 8n^2)[/tex]

9. Factor: [tex]80x^5 - 70x^2 - 60x^7[/tex]

A. [tex]3x^2(80x^3 - 40 - 60x^5)[/tex]
B. [tex]2x^2(80x^3 - 70 - 60x^6)[/tex]
C. [tex]10x^2(8x^3 - 7 - 6x^6)[/tex]
D. [tex]10x^2(80x^4 - 70x - 60x^6)[/tex]

10. Factor: [tex]2n^3 + 16n + 12[/tex]

A. [tex]2n(n^3 + 24n + 6)[/tex]
B. [tex]2(n^3 + 8n + 6)[/tex]
C. [tex]3(n^3 + 8n + 6)[/tex]
D. [tex]2n(n^3 + 8n + 6)[/tex]

11. Factor: [tex]10a^4 + 16a + 10a^2[/tex]

A. [tex]2a^4(5a + 8a^2 + 5a^3)[/tex]
B. [tex]2a(5a^3 + 8 + 5a)[/tex]
C. [tex]2a^4(10 + 16a + 40a^2)[/tex]
D. [tex]3a^3(5 + 8a + a^2)[/tex]

Answer :

Sure! Let's take a look at how to factor each of these expressions one by one.

6. Factor: [tex]\(6m^2 + 16m\)[/tex]

To factor this expression, first look for the greatest common factor (GCF) in both terms.

- The GCF of [tex]\(6m^2\)[/tex] and [tex]\(16m\)[/tex] is [tex]\(2m\)[/tex].

Use the GCF to factor the expression:
[tex]\[ 6m^2 + 16m = 2m(3m + 8) \][/tex]

So, the correct answer is:
A [tex]\(2m(3m + 8)\)[/tex]

---

7. Factor: [tex]\(56a^3 - 8a\)[/tex]

First, find the GCF of both terms.

- The GCF of [tex]\(56a^3\)[/tex] and [tex]\(8a\)[/tex] is [tex]\(8a\)[/tex].

Use the GCF to factor the expression:
[tex]\[ 56a^3 - 8a = 8a(7a^2 - 1) \][/tex]

So, the correct answer is:
C [tex]\(8a(7a^2 - 1)\)[/tex]

---

8. Factor: [tex]\(2n^2 - 8n^3\)[/tex]

Identify the GCF of both terms.

- The GCF of [tex]\(2n^2\)[/tex] and [tex]\(-8n^3\)[/tex] is [tex]\(2n^2\)[/tex].

Use the GCF to factor the expression:
[tex]\[ 2n^2 - 8n^3 = 2n^2(1 - 4n) \][/tex]

So, the correct answer is:
B [tex]\(2n^2(1 - 4n)\)[/tex]

---

9. Factor: [tex]\(80x^5 - 70x^2 - 60x^7\)[/tex]

Find the GCF of all three terms.

- The GCF of the terms [tex]\(80x^5\)[/tex], [tex]\(-70x^2\)[/tex], and [tex]\(-60x^7\)[/tex] is [tex]\(10x^2\)[/tex].

Factor the expression using the GCF:
[tex]\[ 80x^5 - 70x^2 - 60x^7 = 10x^2(8x^3 - 7 - 6x^5) \][/tex]

So, the correct answer is:
C [tex]\(10x^2(8x^3 - 7 - 6x^5)\)[/tex]

---

10. Factor: [tex]\(2n^3 + 16n + 12\)[/tex]

To factor this expression, check each part:

First, look for a common factor for all terms:
- The common factor for the terms [tex]\(2n^3\)[/tex], [tex]\(16n\)[/tex], and [tex]\(12\)[/tex] is [tex]\(2\)[/tex].

Factor out the 2:
[tex]\[ 2n^3 + 16n + 12 = 2(n^3 + 8n + 6) \][/tex]

So, the correct answer is:
B [tex]\(2(n^3 + 8n + 6)\)[/tex]

---

11. Factor: [tex]\(10a^4 + 16a + 10a^2\)[/tex]

Find common factors in the terms.

- The GCF of [tex]\(10a^4\)[/tex], [tex]\(16a\)[/tex], and [tex]\(10a^2\)[/tex] is [tex]\(2a\)[/tex].

Factor out the GCF:
[tex]\[ 10a^4 + 16a + 10a^2 = 2a(5a^3 + 8 + 5a) \][/tex]

So, the correct answer is:
B [tex]\(2a(5a^3 + 8 + 5a)\)[/tex]

That's how you factor each of these expressions step-by-step!