College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product?

[tex]\[ \left(7x^2\right)\left(2x^3+5\right)\left(x^2-4x-9\right) \][/tex]

A. [tex]\( 14x^5 - x^4 - 46x^3 - 58x^2 - 20x - 45 \)[/tex]

B. [tex]\( 14x^6 - 56x^5 - 91x^4 - 140x^3 - 315x^2 \)[/tex]

C. [tex]\( 14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2 \)[/tex]

D. [tex]\( 14x^{12} - 182x^6 + 35x^4 - 455x^2 \)[/tex]

Answer :

Let's find the product of the polynomial expression [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex].

### Step 1: Multiply [tex]\(7x^2\)[/tex] with [tex]\((2x^3 + 5)\)[/tex]

First, distribute [tex]\(7x^2\)[/tex] across the terms in the binomial:

- Multiply [tex]\(7x^2\)[/tex] and [tex]\(2x^3\)[/tex]:
[tex]\[
7x^2 \cdot 2x^3 = 14x^5
\][/tex]

- Multiply [tex]\(7x^2\)[/tex] and [tex]\(5\)[/tex]:
[tex]\[
7x^2 \cdot 5 = 35x^2
\][/tex]

So, [tex]\((7x^2)(2x^3 + 5) = 14x^5 + 35x^2\)[/tex].

### Step 2: Multiply [tex]\((14x^5 + 35x^2)\)[/tex] with [tex]\((x^2 - 4x - 9)\)[/tex]

Now distribute each term in [tex]\((14x^5 + 35x^2)\)[/tex] across each term in [tex]\((x^2 - 4x - 9)\)[/tex].

#### Multiply [tex]\(14x^5\)[/tex] with [tex]\((x^2 - 4x - 9)\)[/tex]:

- [tex]\(14x^5 \cdot x^2 = 14x^7\)[/tex]
- [tex]\(14x^5 \cdot (-4x) = -56x^6\)[/tex]
- [tex]\(14x^5 \cdot (-9) = -126x^5\)[/tex]

#### Multiply [tex]\(35x^2\)[/tex] with [tex]\((x^2 - 4x - 9)\)[/tex]:

- [tex]\(35x^2 \cdot x^2 = 35x^4\)[/tex]
- [tex]\(35x^2 \cdot (-4x) = -140x^3\)[/tex]
- [tex]\(35x^2 \cdot (-9) = -315x^2\)[/tex]

### Step 3: Combine all the terms

Now, let's write out all the terms we have from our multiplication:

[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]

Make sure to combine terms with the same powers of [tex]\(x\)[/tex], if any. In this problem, each term has a unique power of [tex]\(x\)[/tex], so there's no simplification needed.

So, the expanded product of the expression is:

[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]

This is the final answer.