College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product?

[tex]\[

\left(7x^2\right)\left(2x^3+5\right)\left(x^2-4x-9\right)

\][/tex]

A. [tex]\(14x^5 - x^4 - 46x^3 - 58x^2 - 20x - 45\)[/tex]

B. [tex]\(14x^6 - 56x^5 - 91x^4 - 140x^3 - 315x^2\)[/tex]

C. [tex]\(14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2\)[/tex]

D. [tex]\(14x^{12} - 182x^6 + 35x^4 - 455x^2\)[/tex]

Answer :

To find the product of the given expression [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex], we need to multiply these three expressions together. I'll walk you through the steps to arrive at the final product.

### Step 1: Multiply the first two expressions

First, we'll multiply [tex]\(7x^2\)[/tex] by [tex]\((2x^3 + 5)\)[/tex].

- Distribute [tex]\(7x^2\)[/tex] to each term in [tex]\(2x^3 + 5\)[/tex]:

[tex]\[
7x^2 \cdot 2x^3 = 14x^5
\][/tex]

[tex]\[
7x^2 \cdot 5 = 35x^2
\][/tex]

Adding these results together gives:

[tex]\[
14x^5 + 35x^2
\][/tex]

### Step 2: Multiply the result with the third expression

Now, we need to multiply [tex]\((14x^5 + 35x^2)\)[/tex] by [tex]\((x^2 - 4x - 9)\)[/tex].

Distribute each term in [tex]\((14x^5 + 35x^2)\)[/tex] across every term in [tex]\((x^2 - 4x - 9)\)[/tex]:

1. Distribute [tex]\(14x^5\)[/tex]:
- [tex]\(14x^5 \cdot x^2 = 14x^7\)[/tex]
- [tex]\(14x^5 \cdot (-4x) = -56x^6\)[/tex]
- [tex]\(14x^5 \cdot (-9) = -126x^5\)[/tex]

2. Distribute [tex]\(35x^2\)[/tex]:
- [tex]\(35x^2 \cdot x^2 = 35x^4\)[/tex]
- [tex]\(35x^2 \cdot (-4x) = -140x^3\)[/tex]
- [tex]\(35x^2 \cdot (-9) = -315x^2\)[/tex]

### Step 3: Combine all the terms

Now, combine all like terms from these results:

[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]

This is the expanded form and the product of the original expression [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex].