Answer :
To find the product of the expressions [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex], let's break it down step by step:
1. Identify and Multiply the First Two Terms:
- Start by multiplying [tex]\(7x^2\)[/tex] with the second term, [tex]\((2x^3 + 5)\)[/tex].
- Distribute [tex]\(7x^2\)[/tex] across each term in [tex]\((2x^3 + 5)\)[/tex]:
- [tex]\(7x^2 \cdot 2x^3 = 14x^5\)[/tex]
- [tex]\(7x^2 \cdot 5 = 35x^2\)[/tex]
- So, the product of the first two terms is [tex]\(14x^5 + 35x^2\)[/tex].
2. Multiply the Result with the Third Term:
- Now, take the expression [tex]\(14x^5 + 35x^2\)[/tex] and multiply it with [tex]\((x^2 - 4x - 9)\)[/tex].
- Distribute each term in [tex]\(14x^5 + 35x^2\)[/tex] across [tex]\((x^2 - 4x - 9)\)[/tex]:
For [tex]\(14x^5\)[/tex]:
- [tex]\(14x^5 \cdot x^2 = 14x^7\)[/tex]
- [tex]\(14x^5 \cdot (-4x) = -56x^6\)[/tex]
- [tex]\(14x^5 \cdot (-9) = -126x^5\)[/tex]
For [tex]\(35x^2\)[/tex]:
- [tex]\(35x^2 \cdot x^2 = 35x^4\)[/tex]
- [tex]\(35x^2 \cdot (-4x) = -140x^3\)[/tex]
- [tex]\(35x^2 \cdot (-9) = -315x^2\)[/tex]
3. Combine Like Terms:
- Now, combine all these terms:
- [tex]\(14x^7\)[/tex]
- [tex]\(-56x^6\)[/tex]
- [tex]\(-126x^5\)[/tex]
- [tex]\(35x^4\)[/tex]
- [tex]\(-140x^3\)[/tex]
- [tex]\(-315x^2\)[/tex]
4. Write the Final Expression:
- The result of combining and arranging these terms is:
[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]
This final expression is the product of the given terms.
1. Identify and Multiply the First Two Terms:
- Start by multiplying [tex]\(7x^2\)[/tex] with the second term, [tex]\((2x^3 + 5)\)[/tex].
- Distribute [tex]\(7x^2\)[/tex] across each term in [tex]\((2x^3 + 5)\)[/tex]:
- [tex]\(7x^2 \cdot 2x^3 = 14x^5\)[/tex]
- [tex]\(7x^2 \cdot 5 = 35x^2\)[/tex]
- So, the product of the first two terms is [tex]\(14x^5 + 35x^2\)[/tex].
2. Multiply the Result with the Third Term:
- Now, take the expression [tex]\(14x^5 + 35x^2\)[/tex] and multiply it with [tex]\((x^2 - 4x - 9)\)[/tex].
- Distribute each term in [tex]\(14x^5 + 35x^2\)[/tex] across [tex]\((x^2 - 4x - 9)\)[/tex]:
For [tex]\(14x^5\)[/tex]:
- [tex]\(14x^5 \cdot x^2 = 14x^7\)[/tex]
- [tex]\(14x^5 \cdot (-4x) = -56x^6\)[/tex]
- [tex]\(14x^5 \cdot (-9) = -126x^5\)[/tex]
For [tex]\(35x^2\)[/tex]:
- [tex]\(35x^2 \cdot x^2 = 35x^4\)[/tex]
- [tex]\(35x^2 \cdot (-4x) = -140x^3\)[/tex]
- [tex]\(35x^2 \cdot (-9) = -315x^2\)[/tex]
3. Combine Like Terms:
- Now, combine all these terms:
- [tex]\(14x^7\)[/tex]
- [tex]\(-56x^6\)[/tex]
- [tex]\(-126x^5\)[/tex]
- [tex]\(35x^4\)[/tex]
- [tex]\(-140x^3\)[/tex]
- [tex]\(-315x^2\)[/tex]
4. Write the Final Expression:
- The result of combining and arranging these terms is:
[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]
This final expression is the product of the given terms.