High School

What is the product?

[tex]\left(-2x - 9y^2\right)(-4x - 3)[/tex]

A. [tex]-8x^2 - 6x - 36xy^2 - 27y^2[/tex]

B. [tex]-14x^2 - 36xy^2 + 27y^2[/tex]

C. [tex]8x^2 + 6x + 36xy^2 + 27y^2[/tex]

D. [tex]14x^2 + 36xy^2 + 27y^2[/tex]

Answer :

Let's solve the problem step-by-step by expanding the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex].

First, we'll use the distributive property to expand this expression. The distributive property tells us to multiply each term in the first parenthesis by each term in the second parenthesis:

1. Multiply [tex]\(-2x\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-2x) \times (-4x) = 8x^2
\][/tex]

2. Multiply [tex]\(-2x\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-2x) \times (-3) = 6x
\][/tex]

3. Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-9y^2) \times (-4x) = 36xy^2
\][/tex]

4. Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-9y^2) \times (-3) = 27y^2
\][/tex]

Now, add up all these terms to find the product:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

Let's check which option matches this result:

- The correct expression is [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex].

Therefore, the correct answer is:

[tex]\[8x^2 + 6x + 36xy^2 + 27y^2\][/tex]