High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product?

[tex]\left(-2x - 9y^2\right)(-4x - 3)[/tex]

A. [tex]-8x^2 - 6x - 36xy^2 - 27y^2[/tex]

B. [tex]-14x^2 - 36xy^2 + 27y^2[/tex]

C. [tex]8x^2 + 6x + 36xy^2 + 27y^2[/tex]

D. [tex]14x^2 + 36xy^2 + 27y^2[/tex]

Answer :

Let's solve the problem step-by-step by expanding the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex].

First, we'll use the distributive property to expand this expression. The distributive property tells us to multiply each term in the first parenthesis by each term in the second parenthesis:

1. Multiply [tex]\(-2x\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-2x) \times (-4x) = 8x^2
\][/tex]

2. Multiply [tex]\(-2x\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-2x) \times (-3) = 6x
\][/tex]

3. Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-9y^2) \times (-4x) = 36xy^2
\][/tex]

4. Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-9y^2) \times (-3) = 27y^2
\][/tex]

Now, add up all these terms to find the product:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

Let's check which option matches this result:

- The correct expression is [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex].

Therefore, the correct answer is:

[tex]\[8x^2 + 6x + 36xy^2 + 27y^2\][/tex]