High School

What is the product?

[tex]\[
\left(-2x - 9y^2\right)(-4x - 3)
\][/tex]

A. [tex]\(-8x^2 - 6x - 36xy^2 - 27y^2\)[/tex]

B. [tex]\(-14x^2 - 36xy^2 + 27y^2\)[/tex]

C. [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

D. [tex]\(14x^2 + 36xy^2 + 27y^2\)[/tex]

Answer :

Sure, let's find the product of the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex] step by step using the distributive property:

1. First, distribute [tex]\((-2x)\)[/tex]:
- Multiply [tex]\((-2x)\)[/tex] by [tex]\((-4x)\)[/tex]:
[tex]\[
(-2x) \times (-4x) = 8x^2
\][/tex]
- Multiply [tex]\((-2x)\)[/tex] by [tex]\((-3)\)[/tex]:
[tex]\[
(-2x) \times (-3) = 6x
\][/tex]

2. Next, distribute [tex]\((-9y^2)\)[/tex]:
- Multiply [tex]\((-9y^2)\)[/tex] by [tex]\((-4x)\)[/tex]:
[tex]\[
(-9y^2) \times (-4x) = 36xy^2
\][/tex]
- Multiply [tex]\((-9y^2)\)[/tex] by [tex]\((-3)\)[/tex]:
[tex]\[
(-9y^2) \times (-3) = 27y^2
\][/tex]

3. Combine all the terms:
- The first product is [tex]\(8x^2\)[/tex]
- The second product is [tex]\(6x\)[/tex]
- The third product is [tex]\(36xy^2\)[/tex]
- The fourth product is [tex]\(27y^2\)[/tex]

4. Write the final expression by combining all these terms:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

Therefore, the product of [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex] is [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex].

The correct option from the list provided is:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]