High School

What is the product?

[tex] \left(-2x - 9y^2\right)(-4x - 3) [/tex]

A. [tex] -8x^2 - 6x - 36xy^2 - 27y^2 [/tex]

B. [tex] -14x^2 - 36xy^2 + 27y^2 [/tex]

C. [tex] 8x^2 + 6x + 36xy^2 + 27y^2 [/tex]

D. [tex] 14x^2 + 36xy^2 + 27y^2 [/tex]

Answer :

To find the product [tex]\((-2x-9y^2)(-4x-3)\)[/tex], we'll multiply each term in the first expression by each term in the second expression. Let's go through this step-by-step:

1. Multiply the First Terms:
- Take the [tex]\(-2x\)[/tex] from the first expression and multiply it by the [tex]\(-4x\)[/tex] from the second expression:
[tex]\[
(-2x) \times (-4x) = 8x^2
\][/tex]

2. Multiply the Outer Terms:
- Take [tex]\(-2x\)[/tex] from the first expression and multiply it by the [tex]\(-3\)[/tex] from the second expression:
[tex]\[
(-2x) \times (-3) = 6x
\][/tex]

3. Multiply the Inner Terms:
- Take [tex]\(-9y^2\)[/tex] from the first expression and multiply it by the [tex]\(-4x\)[/tex] from the second expression:
[tex]\[
(-9y^2) \times (-4x) = 36xy^2
\][/tex]

4. Multiply the Last Terms:
- Take [tex]\(-9y^2\)[/tex] from the first expression and multiply it by the [tex]\(-3\)[/tex] from the second expression:
[tex]\[
(-9y^2) \times (-3) = 27y^2
\][/tex]

Finally, combine all these results to write the complete polynomial:

[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

Hence, the product simplifies to [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]. This matches one of the given options.