High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product?

[tex]\left(-2x - 9y^2\right)(-4x - 3)[/tex]

A. [tex]-8x^2 - 6x - 36xy^2 - 27y^2[/tex]

B. [tex]-14x^2 - 36xy^2 + 27y^2[/tex]

C. [tex]8x^2 + 6x + 36xy^2 + 27y^2[/tex]

D. [tex]14x^2 + 36xy^2 + 27y^2[/tex]

Answer :

To find the product [tex]\((\left(-2x - 9y^2\right)(-4x - 3)\)[/tex], we need to apply the distributive property, also known as the FOIL method (First, Outer, Inner, Last) for binomials.

Let's break it down step by step:

1. First Terms:
- Multiply the first terms of each binomial: [tex]\((-2x) \times (-4x)\)[/tex]
- This equals [tex]\(8x^2\)[/tex].

2. Outer Terms:
- Multiply the outer terms: [tex]\((-2x) \times (-3)\)[/tex]
- This equals [tex]\(6x\)[/tex].

3. Inner Terms:
- Multiply the inner terms: [tex]\((-9y^2) \times (-4x)\)[/tex]
- This equals [tex]\(36xy^2\)[/tex].

4. Last Terms:
- Multiply the last terms of each binomial: [tex]\((-9y^2) \times (-3)\)[/tex]
- This equals [tex]\(27y^2\)[/tex].

Now, combine all these terms together:

- [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

This is the fully expanded and simplified expression for the given question. Therefore, the correct product is:

[tex]\[8x^2 + 6x + 36xy^2 + 27y^2\][/tex]