College

What is the product?

[tex]\[

(7x^2)(2x^3 + 5)(x^2 - 4x - 9)

\][/tex]

A. [tex]\(14x^5 - x^4 - 46x^3 - 58x^2 - 20x - 45\)[/tex]

B. [tex]\(14x^6 - 56x^5 - 91x^4 - 140x^3 - 315x^2\)[/tex]

C. [tex]\(14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2\)[/tex]

D. [tex]\(14x^{12} - 182x^6 + 35x^4 - 455x^2\)[/tex]

Answer :

To find the product of the expressions [tex]\((7x^2)\)[/tex], [tex]\((2x^3 + 5)\)[/tex], and [tex]\((x^2 - 4x - 9)\)[/tex], we'll multiply these polynomials together step by step.

### Step-by-Step Solution:

1. Start with the first and second expressions:
[tex]\((7x^2)\)[/tex] and [tex]\((2x^3 + 5)\)[/tex].

- Distribute [tex]\(7x^2\)[/tex] to each term in [tex]\((2x^3 + 5)\)[/tex]:
[tex]\[
7x^2 \cdot 2x^3 = 14x^5
\][/tex]
[tex]\[
7x^2 \cdot 5 = 35x^2
\][/tex]

- The result of this multiplication is:
[tex]\[
14x^5 + 35x^2
\][/tex]

2. Now, multiply the result from step 1 with the third expression [tex]\((x^2 - 4x - 9)\)[/tex]:

- Multiply each term in [tex]\((14x^5 + 35x^2)\)[/tex] by each term in [tex]\((x^2 - 4x - 9)\)[/tex], and then add the results together.

- Distribute [tex]\(14x^5\)[/tex]:
[tex]\[
14x^5 \cdot x^2 = 14x^7
\][/tex]
[tex]\[
14x^5 \cdot (-4x) = -56x^6
\][/tex]
[tex]\[
14x^5 \cdot (-9) = -126x^5
\][/tex]

- Distribute [tex]\(35x^2\)[/tex]:
[tex]\[
35x^2 \cdot x^2 = 35x^4
\][/tex]
[tex]\[
35x^2 \cdot (-4x) = -140x^3
\][/tex]
[tex]\[
35x^2 \cdot (-9) = -315x^2
\][/tex]

3. Combine all terms:

- Write all the terms together:
[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]

This is the product of the given expressions:
[tex]\[
\boxed{14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2}
\][/tex]