College

What is the product?

[tex] (-2x - 9y^2)(-4x - 3) [/tex]

A. [tex] -8x^2 - 6x - 36xy^2 - 27y^2 [/tex]

B. [tex] -14x^2 - 36xy^2 + 27y^2 [/tex]

C. [tex] 8x^2 + 6x + 36xy^2 + 27y^2 [/tex]

D. [tex] 14x^2 + 36xy^2 + 27y^2 [/tex]

Answer :

Certainly! Let's work through the problem step-by-step to find the product of the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex].

### Step 1: Distribute Each Term
We will use the distributive property to expand the expression. This involves multiplying each term in the first parenthesis by each term in the second parenthesis.

#### Distribute [tex]\(-2x\)[/tex]:
1. [tex]\((-2x) \times (-4x) = 8x^2\)[/tex]
2. [tex]\((-2x) \times (-3) = 6x\)[/tex]

#### Distribute [tex]\(-9y^2\)[/tex]:
3. [tex]\((-9y^2) \times (-4x) = 36xy^2\)[/tex]
4. [tex]\((-9y^2) \times (-3) = 27y^2\)[/tex]

### Step 2: Combine All the Results
Now, we'll combine all these products to get the expanded expression:

- [tex]\(8x^2\)[/tex]
- [tex]\(6x\)[/tex]
- [tex]\(36xy^2\)[/tex]
- [tex]\(27y^2\)[/tex]

Putting it all together, the expanded expression is:
[tex]\[8x^2 + 6x + 36xy^2 + 27y^2\][/tex]

This matches one of the given options:

[tex]\[8 x^2 + 6 x + 36 x y^2 + 27 y^2\][/tex]

So, the correct answer is:
[tex]\[8 x^2 + 6 x + 36 x y^2 + 27 y^2\][/tex]