College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product?

[tex]\[

(-2x - 9y^2)(-4x - 3)

\][/tex]

A. [tex]\(-8x^2 - 6x - 36xy^2 - 27y^2\)[/tex]

B. [tex]\(-14x^2 - 36xy^2 + 27y^2\)[/tex]

C. [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

D. [tex]\(14x^2 + 36xy^2 + 27y^2\)[/tex]

Answer :

To solve the problem of finding the product [tex]\(( -2x - 9y^2)(-4x - 3)\)[/tex], we need to distribute each term in the first polynomial by each term in the second polynomial. Here's a step-by-step explanation:

1. First, distribute [tex]\(-2x\)[/tex] over each term in the second parenthesis [tex]\((-4x - 3)\)[/tex]:

- Multiply [tex]\(-2x\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\(-2x \times -4x = 8x^2\)[/tex]

- Multiply [tex]\(-2x\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\(-2x \times -3 = 6x\)[/tex]

2. Next, distribute [tex]\(-9y^2\)[/tex] over each term in the second parenthesis [tex]\((-4x - 3)\)[/tex]:

- Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\(-9y^2 \times -4x = 36xy^2\)[/tex]

- Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\(-9y^2 \times -3 = 27y^2\)[/tex]

3. Combine all the results from the distributions:

The expression becomes:
[tex]\[ 8x^2 + 6x + 36xy^2 + 27y^2 \][/tex]

This is the expanded polynomial after multiplying the two given polynomials. Therefore, the correct product is:

[tex]\[ 8x^2 + 6x + 36xy^2 + 27y^2 \][/tex]

This matches the option: [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex].