College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product of the polynomials [tex]-3x^2 + 5[/tex] and [tex]x^3 + 3x^2 - x - 7[/tex]?

A. [tex]-3x^5 - 9x^4 + 8x^3 + 6x^2 - 5x + 35[/tex]
B. [tex]-3x^5 - 9x^4 + 2x^3 + 36x^2 - 5x - 35[/tex]
C. [tex]-3x^5 - 9x^4 + 8x^3 + 6x^2 - 5x - 35[/tex]
D. [tex]-3x^5 - 9x^4 + 8x^3 + 36x^2 - 5x - 35[/tex]
E. [tex]-3x^5 - 9x^4 + 2x^3 + 36x^2 - 5x + 35[/tex]

Answer :

To find the product of the polynomials [tex]\(-3x^2 + 5\)[/tex] and [tex]\(x^3 + 3x^2 - x - 7\)[/tex], we need to multiply each term of the first polynomial by each term of the second polynomial and then combine like terms. Let's go through the steps:

1. Multiply [tex]\(-3x^2\)[/tex] by each term in the second polynomial:

- [tex]\((-3x^2) \cdot (x^3) = -3x^5\)[/tex]
- [tex]\((-3x^2) \cdot (3x^2) = -9x^4\)[/tex]
- [tex]\((-3x^2) \cdot (-x) = 3x^3\)[/tex]
- [tex]\((-3x^2) \cdot (-7) = 21x^2\)[/tex]

2. Multiply [tex]\(5\)[/tex] by each term in the second polynomial:

- [tex]\(5 \cdot (x^3) = 5x^3\)[/tex]
- [tex]\(5 \cdot (3x^2) = 15x^2\)[/tex]
- [tex]\(5 \cdot (-x) = -5x\)[/tex]
- [tex]\(5 \cdot (-7) = -35\)[/tex]

3. Combine all these terms:

[tex]\[
-3x^5 - 9x^4 + 3x^3 + 21x^2 + 5x^3 + 15x^2 - 5x - 35
\][/tex]

4. Combine like terms:

- The terms in [tex]\(x^5\)[/tex] are [tex]\(-3x^5\)[/tex].
- The terms in [tex]\(x^4\)[/tex] are [tex]\(-9x^4\)[/tex].
- The terms in [tex]\(x^3\)[/tex] are [tex]\(3x^3 + 5x^3 = 8x^3\)[/tex].
- The terms in [tex]\(x^2\)[/tex] are [tex]\(21x^2 + 15x^2 = 36x^2\)[/tex].
- The terms in [tex]\(x\)[/tex] are [tex]\(-5x\)[/tex].
- The constant terms are [tex]\(-35\)[/tex].

So, the resulting polynomial is:

[tex]\[
-3x^5 - 9x^4 + 8x^3 + 36x^2 - 5x - 35
\][/tex]

This matches option [tex]\(D\)[/tex], so the correct answer is:

D. [tex]\(-3x^5 - 9x^4 + 8x^3 + 36x^2 - 5x - 35\)[/tex]