High School

What is the product of the following expression?

[tex]\[\left(-2x - 9y^2\right)(-4x - 3)\][/tex]

A. [tex]\(-8x^2 - 6x - 36xy^2 - 27y^2\)[/tex]

B. [tex]\(-14x^2 - 36xy^2 + 27y^2\)[/tex]

C. [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

D. [tex]\(14x^2 + 36xy^2 + 27y^2\)[/tex]

Answer :

To find the product [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex], we can use the distributive property, often called the FOIL method in this context, which stands for First, Outer, Inner, and Last. Let's break it down step-by-step:

1. First Terms: Multiply the first terms from each binomial:
[tex]\((-2x) \times (-4x) = 8x^2\)[/tex].

2. Outer Terms: Multiply the outer terms from the binomials:
[tex]\((-2x) \times (-3) = 6x\)[/tex].

3. Inner Terms: Multiply the inner terms from the binomials:
[tex]\((-9y^2) \times (-4x) = 36xy^2\)[/tex].

4. Last Terms: Multiply the last terms from each binomial:
[tex]\((-9y^2) \times (-3) = 27y^2\)[/tex].

Now, combine all these terms to get the final expression:
[tex]\[8x^2 + 6x + 36xy^2 + 27y^2.\][/tex]

This is the product of the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex].