College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product of the following expression?

[tex]
(7x^2)(2x^3+5)(x^2-4x-9)
[/tex]

A. [tex]14x^5 - x^4 - 46x^3 - 58x^2 - 20x - 45[/tex]

B. [tex]14x^6 - 56x^5 - 91x^4 - 140x^3 - 315x^2[/tex]

C. [tex]14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2[/tex]

D. [tex]14x^{12} - 182x^6 + 35x^4 - 455x^2[/tex]

Answer :

To find the product of the given expressions [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex], we can follow these steps:

1. Multiply the expressions step-by-step:

Start by multiplying the first two expressions:
[tex]\((7x^2) \cdot (2x^3 + 5)\)[/tex].

- Distribute [tex]\(7x^2\)[/tex] to each term in the second expression:
- [tex]\(7x^2 \cdot 2x^3 = 14x^5\)[/tex]
- [tex]\(7x^2 \cdot 5 = 35x^2\)[/tex]

So, [tex]\((7x^2)(2x^3 + 5)\)[/tex] simplifies to [tex]\(14x^5 + 35x^2\)[/tex].

2. Multiply the result with the third expression:

Now multiply [tex]\((14x^5 + 35x^2)\)[/tex] by [tex]\((x^2 - 4x - 9)\)[/tex].

- Distribute each term of [tex]\(14x^5 + 35x^2\)[/tex] across the terms in [tex]\(x^2 - 4x - 9\)[/tex].

For [tex]\(14x^5\)[/tex]:
- [tex]\(14x^5 \cdot x^2 = 14x^7\)[/tex]
- [tex]\(14x^5 \cdot (-4x) = -56x^6\)[/tex]
- [tex]\(14x^5 \cdot (-9) = -126x^5\)[/tex]

For [tex]\(35x^2\)[/tex]:
- [tex]\(35x^2 \cdot x^2 = 35x^4\)[/tex]
- [tex]\(35x^2 \cdot (-4x) = -140x^3\)[/tex]
- [tex]\(35x^2 \cdot (-9) = -315x^2\)[/tex]

3. Combine all the terms:

Combine and organize all the terms from the distribution:
[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]

This results in the polynomial:

[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]

This is the expanded form of the product of the given expressions.