College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product of the following expression?

[tex](7x^2)(2x^3 + 5)(x^2 - 4x - 9)[/tex]

A. [tex]14x^5 - x^4 - 46x^3 - 58x^2 - 20x - 45[/tex]
B. [tex]14x^6 - 56x^5 - 91x^4 - 140x^3 - 315x^2[/tex]
C. [tex]14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2[/tex]
D. [tex]14x^{12} - 182x^6 + 35x^4 - 455x^2[/tex]

Answer :

To find the product of the given expression [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex], we'll multiply the expressions step-by-step:

1. Multiply the first two expressions:
- Start with [tex]\(7x^2\)[/tex] and distribute it across [tex]\(2x^3 + 5\)[/tex]:
[tex]\[
7x^2 \times (2x^3 + 5) = (7x^2 \times 2x^3) + (7x^2 \times 5)
\][/tex]
- Calculate each term:
- [tex]\(7x^2 \times 2x^3 = 14x^5\)[/tex]
- [tex]\(7x^2 \times 5 = 35x^2\)[/tex]
- Combine to get: [tex]\(14x^5 + 35x^2\)[/tex]

2. Multiply the result with the third expression [tex]\(x^2 - 4x - 9\)[/tex]:
- Distribute [tex]\((14x^5 + 35x^2)\)[/tex] across [tex]\((x^2 - 4x - 9)\)[/tex]:
[tex]\[
(14x^5 + 35x^2) \times (x^2 - 4x - 9)
\][/tex]
- Multiply each term in the first polynomial by each term in the second polynomial:
- [tex]\(14x^5 \times x^2 = 14x^7\)[/tex]
- [tex]\(14x^5 \times -4x = -56x^6\)[/tex]
- [tex]\(14x^5 \times -9 = -126x^5\)[/tex]
- [tex]\(35x^2 \times x^2 = 35x^4\)[/tex]
- [tex]\(35x^2 \times -4x = -140x^3\)[/tex]
- [tex]\(35x^2 \times -9 = -315x^2\)[/tex]

3. Combine all the terms:
- Put together all the terms from the multiplication:
[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]

The expanded form of the product is:
[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]

This is the final answer for the expression [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex].