College

What is the product of the following expression?

[tex](4x)(-3x^8)(-7x^3)[/tex]

A. [tex]-84x^{12}[/tex]
B. [tex]-84x^{24}[/tex]
C. [tex]84x^{12}[/tex]
D. [tex]84x^{24}[/tex]

Answer :

To find the product of the expression [tex]\((4x)(-3x^8)(-7x^3)\)[/tex], we need to follow a few steps:

1. Multiply the Coefficients:
- The coefficients are 4, -3, and -7.
- Multiply them: [tex]\(4 \times (-3) \times (-7)\)[/tex].
- Calculate: [tex]\(4 \times -3 = -12\)[/tex], and then [tex]\(-12 \times -7 = 84\)[/tex].

2. Multiply the Variables:
- The variables have exponents: [tex]\(x\)[/tex], [tex]\(x^8\)[/tex], and [tex]\(x^3\)[/tex].
- When multiplying terms with the same base, you add the exponents.
- So, [tex]\(x^1 \times x^8 \times x^3\)[/tex] becomes [tex]\(x^{1+8+3} = x^{12}\)[/tex].

3. Combine the Results:
- Combine the coefficient and the new power of [tex]\(x\)[/tex].
- The final product is [tex]\(84x^{12}\)[/tex].

Therefore, the product of the expression [tex]\((4x)(-3x^8)(-7x^3)\)[/tex] is [tex]\(84x^{12}\)[/tex]. The correct answer is [tex]\(84x^{12}\)[/tex].