Answer :
Sure! Let's solve this step by step.
We are given:
- The length of [tex]\( \overline{MO} \)[/tex] is 12.3 units.
- The length of [tex]\( \overline{NO} \)[/tex] is 26.9 units.
We need to find the length of [tex]\( \overline{NM} \)[/tex].
1. Since point [tex]\( M \)[/tex] is between points [tex]\( N \)[/tex] and [tex]\( O \)[/tex] on [tex]\( \overline{NO} \)[/tex], the segments [tex]\( \overline{NM} \)[/tex] and [tex]\( \overline{MO} \)[/tex] add up to the entire length of [tex]\( \overline{NO} \)[/tex].
2. We can write this relationship as:
[tex]\[
NM + MO = NO
\][/tex]
3. Rearrange the equation to solve for [tex]\( \overline{NM} \)[/tex]:
[tex]\[
NM = NO - MO
\][/tex]
4. Substitute the given values:
[tex]\[
NM = 26.9 - 12.3
\][/tex]
5. Perform the subtraction:
[tex]\[
NM = 14.6
\][/tex]
So, the length of [tex]\( \overline{NM} \)[/tex] is 14.6 units.
Therefore, the correct answer is:
B. 14.6
We are given:
- The length of [tex]\( \overline{MO} \)[/tex] is 12.3 units.
- The length of [tex]\( \overline{NO} \)[/tex] is 26.9 units.
We need to find the length of [tex]\( \overline{NM} \)[/tex].
1. Since point [tex]\( M \)[/tex] is between points [tex]\( N \)[/tex] and [tex]\( O \)[/tex] on [tex]\( \overline{NO} \)[/tex], the segments [tex]\( \overline{NM} \)[/tex] and [tex]\( \overline{MO} \)[/tex] add up to the entire length of [tex]\( \overline{NO} \)[/tex].
2. We can write this relationship as:
[tex]\[
NM + MO = NO
\][/tex]
3. Rearrange the equation to solve for [tex]\( \overline{NM} \)[/tex]:
[tex]\[
NM = NO - MO
\][/tex]
4. Substitute the given values:
[tex]\[
NM = 26.9 - 12.3
\][/tex]
5. Perform the subtraction:
[tex]\[
NM = 14.6
\][/tex]
So, the length of [tex]\( \overline{NM} \)[/tex] is 14.6 units.
Therefore, the correct answer is:
B. 14.6