High School

What is the product of the expression?

[tex]\[

\left(-2x - 9y^2\right)(-4x - 3)

\][/tex]

A. [tex]\(-8x^2 - 6x - 36xy^2 - 27y^2\)[/tex]

B. [tex]\(-14x^2 - 36xy^2 + 27y^2\)[/tex]

C. [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

D. [tex]\(14x^2 + 36xy^2 + 27y^2\)[/tex]

Answer :

To find the product
[tex]$$\left(-2x - 9y^2\right)(-4x - 3),$$[/tex]
we multiply each term in the first parentheses by each term in the second.

1. Multiply the first term of the first polynomial by each term in the second:
- Multiply [tex]$-2x$[/tex] by [tex]$-4x$[/tex]:
[tex]$$-2x \cdot (-4x) = 8x^2.$$[/tex]
- Multiply [tex]$-2x$[/tex] by [tex]$-3$[/tex]:
[tex]$$-2x \cdot (-3) = 6x.$$[/tex]

2. Multiply the second term of the first polynomial by each term in the second:
- Multiply [tex]$-9y^2$[/tex] by [tex]$-4x$[/tex]:
[tex]$$-9y^2 \cdot (-4x) = 36xy^2.$$[/tex]
- Multiply [tex]$-9y^2$[/tex] by [tex]$-3$[/tex]:
[tex]$$-9y^2 \cdot (-3) = 27y^2.$$[/tex]

3. Combine all the resulting terms:
[tex]$$8x^2 + 6x + 36xy^2 + 27y^2.$$[/tex]

Thus, the product is:
[tex]$$8x^2 + 6x + 36xy^2 + 27y^2.$$[/tex]