College

What is the product of the expression?

[tex](4x)\left(-3x^8\right)\left(-7x^3\right)[/tex]

A. [tex]-84x^{12}[/tex]
B. [tex]-84x^{24}[/tex]
C. [tex]84x^{12}[/tex]
D. [tex]84x^{24}[/tex]

Answer :

Sure! Let's solve the problem step-by-step:

We need to find the product of [tex]\((4x)\)[/tex], [tex]\((-3x^8)\)[/tex], and [tex]\((-7x^3)\)[/tex].

### Step 1: Multiply the Coefficients
First, we'll multiply the numerical coefficients together:

- The coefficients are [tex]\(4\)[/tex], [tex]\(-3\)[/tex], and [tex]\(-7\)[/tex].
- Multiply them:
[tex]\[
4 \times (-3) \times (-7) = 84
\][/tex]
Note that multiplying two negative numbers [tex]\(-3\)[/tex] and [tex]\(-7\)[/tex] gives a positive product.

### Step 2: Combine the Variables
Now, let's handle the variables:

- We have three factors involving [tex]\(x\)[/tex]: [tex]\(x\)[/tex], [tex]\(x^8\)[/tex], and [tex]\(x^3\)[/tex].
- Use the rule for multiplying powers with the same base: [tex]\(x^a \times x^b = x^{a+b}\)[/tex].
- Combine the exponents:
[tex]\[
x \times x^8 \times x^3 = x^{1+8+3} = x^{12}
\][/tex]

### Final Step: Combine Everything Together
Now, combine the coefficient and the variable part:

- The product is [tex]\(84\)[/tex] (from the coefficients) and [tex]\(x^{12}\)[/tex] (from the exponents).

Thus, the final product is [tex]\(84x^{12}\)[/tex].

So the correct choice is [tex]\(84 x^{12}\)[/tex].