College

When the Celsius temperature is [tex]30^{\circ}[/tex], the corresponding Fahrenheit temperature is [tex]86^{\circ}[/tex]. When the Celsius temperature is [tex]110^{\circ}[/tex], the corresponding Fahrenheit temperature is [tex]230^{\circ}[/tex]. Let [tex]C[/tex] represent the Celsius temperature and [tex]F[/tex] the Fahrenheit temperature.

a. Express [tex]F[/tex] as an exact linear function of [tex]C[/tex].
b. Solve the equation in part a for [tex]C[/tex], thus expressing [tex]C[/tex] as a function of [tex]F[/tex].
c. For what temperature is [tex]F = C[/tex]?

a. Express [tex]F[/tex] as an exact linear function of [tex]C[/tex].
[tex] F = \square [/tex]
(Simplify your answer. Do not include the degree symbol in your answer.)

Answer :

Let's solve the problem step-by-step, using the information we have about temperatures in Celsius and Fahrenheit.

### Part a: Express [tex]\( F \)[/tex] as a linear function of [tex]\( C \)[/tex]

The problem gives us two points for temperature conversion:
- When Celsius ([tex]\( C \)[/tex]) is 30, Fahrenheit ([tex]\( F \)[/tex]) is 86.
- When Celsius ([tex]\( C \)[/tex]) is 110, Fahrenheit ([tex]\( F \)[/tex]) is 230.

We can represent these points as [tex]\((30, 86)\)[/tex] and [tex]\((110, 230)\)[/tex].

Step 1: Find the slope [tex]\( m \)[/tex] of the line

The slope [tex]\( m \)[/tex] of a line through two points [tex]\((C_1, F_1)\)[/tex] and [tex]\((C_2, F_2)\)[/tex] is given by:

[tex]\[
m = \frac{F_2 - F_1}{C_2 - C_1}
\][/tex]

Substitute the given points:

[tex]\[
m = \frac{230 - 86}{110 - 30} = \frac{144}{80} = 1.8
\][/tex]

Step 2: Find the y-intercept [tex]\( b \)[/tex]

Using the slope-intercept form [tex]\( F = mC + b \)[/tex], substitute one of the points, say [tex]\((30, 86)\)[/tex], to find [tex]\( b \)[/tex]:

[tex]\[
86 = 1.8 \times 30 + b
\][/tex]

[tex]\[
86 = 54 + b
\][/tex]

[tex]\[
b = 86 - 54 = 32
\][/tex]

Thus, the linear function is:

[tex]\[
F = 1.8C + 32
\][/tex]

### Part b: Solve for [tex]\( C \)[/tex] to express [tex]\( C \)[/tex] as a function of [tex]\( F \)[/tex]

We have [tex]\( F = 1.8C + 32 \)[/tex]. To express [tex]\( C \)[/tex] as a function of [tex]\( F \)[/tex], solve for [tex]\( C \)[/tex]:

1. Subtract 32 from both sides:

[tex]\[
F - 32 = 1.8C
\][/tex]

2. Divide both sides by 1.8:

[tex]\[
C = \frac{F - 32}{1.8}
\][/tex]

This can be simplified to:

[tex]\[
C = 0.5556F - 17.7778
\][/tex]

### Part c: Find the temperature where [tex]\( F = C \)[/tex]

Set the two expressions for [tex]\( F \)[/tex] and [tex]\( C \)[/tex] equal to each other:

[tex]\[
1.8C + 32 = C
\][/tex]

Rearrange terms:

[tex]\[
1.8C - C = -32
\][/tex]

[tex]\[
0.8C = -32
\][/tex]

Divide by 0.8:

[tex]\[
C = -40
\][/tex]

Therefore, the temperature at which [tex]\( F = C \)[/tex] is [tex]\(-40\)[/tex] degrees.