College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product of [tex]\left(-2x - 9y^2\right)(-4x - 3)[/tex]?

A. [tex]-8x^2 - 6x - 36xy^2 - 27y^2[/tex]

B. [tex]-14x^2 - 36xy^2 + 27y^2[/tex]

C. [tex]8x^2 + 6x + 36xy^2 + 27y^2[/tex]

D. [tex]14x^2 + 36xy^2 + 27y^2[/tex]

Answer :

To find the product of [tex]\(( -2x - 9y^2 )(-4x - 3)\)[/tex], we can use the distributive property (also known as the FOIL method for binomials).

Here's how it works:

1. Multiply each term in the first binomial by each term in the second binomial:
- First, multiply [tex]\(-2x\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-2x) \cdot (-4x) = 8x^2
\][/tex]
- Next, multiply [tex]\(-2x\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-2x) \cdot (-3) = 6x
\][/tex]
- Then, multiply [tex]\(-9y^2\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-9y^2) \cdot (-4x) = 36xy^2
\][/tex]
- Finally, multiply [tex]\(-9y^2\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-9y^2) \cdot (-3) = 27y^2
\][/tex]

2. Combine all the terms:
- The expanded expression is:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

Therefore, the product is [tex]\(\boxed{8x^2 + 6x + 36xy^2 + 27y^2}\)[/tex].