Answer :
To find the product of [tex]\(( -2x - 9y^2 )(-4x - 3)\)[/tex], we can use the distributive property (also known as the FOIL method for binomials).
Here's how it works:
1. Multiply each term in the first binomial by each term in the second binomial:
- First, multiply [tex]\(-2x\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-2x) \cdot (-4x) = 8x^2
\][/tex]
- Next, multiply [tex]\(-2x\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-2x) \cdot (-3) = 6x
\][/tex]
- Then, multiply [tex]\(-9y^2\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-9y^2) \cdot (-4x) = 36xy^2
\][/tex]
- Finally, multiply [tex]\(-9y^2\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-9y^2) \cdot (-3) = 27y^2
\][/tex]
2. Combine all the terms:
- The expanded expression is:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]
Therefore, the product is [tex]\(\boxed{8x^2 + 6x + 36xy^2 + 27y^2}\)[/tex].
Here's how it works:
1. Multiply each term in the first binomial by each term in the second binomial:
- First, multiply [tex]\(-2x\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-2x) \cdot (-4x) = 8x^2
\][/tex]
- Next, multiply [tex]\(-2x\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-2x) \cdot (-3) = 6x
\][/tex]
- Then, multiply [tex]\(-9y^2\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-9y^2) \cdot (-4x) = 36xy^2
\][/tex]
- Finally, multiply [tex]\(-9y^2\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-9y^2) \cdot (-3) = 27y^2
\][/tex]
2. Combine all the terms:
- The expanded expression is:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]
Therefore, the product is [tex]\(\boxed{8x^2 + 6x + 36xy^2 + 27y^2}\)[/tex].