High School

What is the product of the following expression?

[tex](-2x - 9y^2)(-4x - 3)[/tex]

A. [tex]-8x^2 - 6x - 36xy^2 - 27y^2[/tex]

B. [tex]-14x^2 - 36xy^2 + 27y^2[/tex]

C. [tex]8x^2 + 6x + 36xy^2 + 27y^2[/tex]

D. [tex]14x^2 + 36xy^2 + 27y^2[/tex]

Answer :

To find the product of the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex], we need to use the distributive property, also known as the FOIL method when dealing with binomials. Let's expand the expression step-by-step:

1. First Terms: Multiply the first terms of each binomial:
[tex]\[
(-2x) \times (-4x) = 8x^2
\][/tex]

2. Outer Terms: Multiply the outer terms:
[tex]\[
(-2x) \times (-3) = 6x
\][/tex]

3. Inner Terms: Multiply the inner terms:
[tex]\[
(-9y^2) \times (-4x) = 36xy^2
\][/tex]

4. Last Terms: Multiply the last terms:
[tex]\[
(-9y^2) \times (-3) = 27y^2
\][/tex]

Now, combine all these results to get the expanded expression:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

This expanded expression matches one of the given options:
- [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

So, the correct product is:
[tex]\[ \boxed{8x^2 + 6x + 36xy^2 + 27y^2} \][/tex]