Answer :
Let's break down the problem step by step.
1. First, we calculate the product of [tex]$\frac{4}{5}$[/tex] and [tex]$3$[/tex]. Multiply the fraction by [tex]$3$[/tex]:
[tex]$$
\frac{4}{5} \times 3 = \frac{4 \times 3}{5} = \frac{12}{5} = 2.4.
$$[/tex]
2. Next, we compute the division [tex]$48 \div 4$[/tex]:
[tex]$$
48 \div 4 = 12.
$$[/tex]
3. Finally, we evaluate the expression interpreted as [tex]$\frac{172 \times 3}{3}$[/tex]. Notice that multiplying by [tex]$3$[/tex] and then dividing by [tex]$3$[/tex] returns the original number:
[tex]$$
\frac{172 \times 3}{3} = 172.
$$[/tex]
Thus, the final results are:
- The product [tex]$\frac{4}{5} \times 3$[/tex] is [tex]$2.4$[/tex],
- [tex]$48 \div 4$[/tex] is [tex]$12$[/tex],
- And the third expression is [tex]$172$[/tex].
1. First, we calculate the product of [tex]$\frac{4}{5}$[/tex] and [tex]$3$[/tex]. Multiply the fraction by [tex]$3$[/tex]:
[tex]$$
\frac{4}{5} \times 3 = \frac{4 \times 3}{5} = \frac{12}{5} = 2.4.
$$[/tex]
2. Next, we compute the division [tex]$48 \div 4$[/tex]:
[tex]$$
48 \div 4 = 12.
$$[/tex]
3. Finally, we evaluate the expression interpreted as [tex]$\frac{172 \times 3}{3}$[/tex]. Notice that multiplying by [tex]$3$[/tex] and then dividing by [tex]$3$[/tex] returns the original number:
[tex]$$
\frac{172 \times 3}{3} = 172.
$$[/tex]
Thus, the final results are:
- The product [tex]$\frac{4}{5} \times 3$[/tex] is [tex]$2.4$[/tex],
- [tex]$48 \div 4$[/tex] is [tex]$12$[/tex],
- And the third expression is [tex]$172$[/tex].