College

What is the product of [tex]$8.2 \times 10^9$[/tex] and [tex]$4.5 \times 10^{-5}$[/tex] in scientific notation?

A. [tex]$36.9 \times 10^{-45}$[/tex]
B. [tex]$12.7 \times 10^4$[/tex]
C. [tex]$3.69 \times 10^5$[/tex]
D. [tex]$3.69 \times 10^{14}$[/tex]

Answer :

Sure, let's break this down step by step.

To find the product of [tex]\(8.2 \times 10^9\)[/tex] and [tex]\(4.5 \times 10^{-5}\)[/tex] in scientific notation, follow these steps:

1. Multiply the coefficients (the numbers in front):
[tex]\[
8.2 \times 4.5
\][/tex]

2. Add the exponents of the powers of 10:
[tex]\[
10^9 \times 10^{-5} = 10^{9-5} = 10^4
\][/tex]

3. First, calculate the product of the coefficients:
[tex]\[
8.2 \times 4.5 = 36.9
\][/tex]

4. Next, combine this product with the power of 10:
[tex]\[
36.9 \times 10^4
\][/tex]

So, the product of [tex]\(8.2 \times 10^9\)[/tex] and [tex]\(4.5 \times 10^{-5}\)[/tex] in scientific notation is:
[tex]\[
36.9 \times 10^4
\][/tex]

Since we want to match this with one of the given answer choices, which might present the number in proper scientific notation, we compare directly and confirm that:
[tex]\[
36.9 \times 10^4
\][/tex]

is indeed one of the provided choices, matching it correctly.

Therefore, the correct answer is:
[tex]\[
36.9 \times 10^4
\][/tex]