College

What is the product of [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex]?

A. [tex]\(-8x^2 - 6x - 36xy^2 - 27y^2\)[/tex]

B. [tex]\(-14x^2 - 36xy^2 + 27y^2\)[/tex]

C. [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

D. [tex]\(14x^2 + 36xy^2 + 27y^2\)[/tex]

Answer :

Certainly! Let's solve the problem step-by-step by expanding the expression [tex]\(( -2x - 9y^2 ) ( -4x - 3 )\)[/tex].

Step 1: Apply the Distributive Property

We need to distribute each term in the first parenthesis across each term in the second parenthesis:

- Multiply [tex]\(-2x\)[/tex] by [tex]\(-4x\)[/tex]
- Multiply [tex]\(-2x\)[/tex] by [tex]\(-3\)[/tex]
- Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-4x\)[/tex]
- Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-3\)[/tex]

Step 2: Perform Each Multiplication

1. [tex]\((-2x) \cdot (-4x)\)[/tex]:

[tex]\(-2 \times -4 = 8\)[/tex], and [tex]\(x \times x = x^2\)[/tex]

Result: [tex]\(8x^2\)[/tex]

2. [tex]\((-2x) \cdot (-3)\)[/tex]:

[tex]\(-2 \times -3 = 6\)[/tex], and the variable is [tex]\(x\)[/tex]

Result: [tex]\(6x\)[/tex]

3. [tex]\((-9y^2) \cdot (-4x)\)[/tex]:

[tex]\(-9 \times -4 = 36\)[/tex], and the variables [tex]\(y^2 \times x\)[/tex]

Result: [tex]\(36xy^2\)[/tex]

4. [tex]\((-9y^2) \cdot (-3)\)[/tex]:

[tex]\(-9 \times -3 = 27\)[/tex], and the variable is [tex]\(y^2\)[/tex]

Result: [tex]\(27y^2\)[/tex]

Step 3: Combine All the Terms

Now, combine all the individual results:

[tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

This matches one of the provided options:

[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

So, the answer is:

[tex]\[8x^2 + 6x + 36xy^2 + 27y^2\][/tex]