Answer :
We want to simplify the product
[tex]$$
\left(7x^2\right)\left(2x^3+5\right)\left(x^2-4x-9\right).
$$[/tex]
We'll break the process into two main steps.
---
Step 1. Multiply the first two factors
Multiply the two factors:
[tex]$$
7x^2 \quad \text{and} \quad 2x^3 + 5.
$$[/tex]
Distribute [tex]$7x^2$[/tex] over the sum:
[tex]\[
7x^2 \cdot (2x^3) = 14x^5,
\][/tex]
[tex]\[
7x^2 \cdot 5 = 35x^2.
\][/tex]
So their product is:
[tex]$$
14x^5 + 35x^2.
$$[/tex]
---
Step 2. Multiply the result by the third factor
Now multiply the result
[tex]$$
14x^5 + 35x^2
$$[/tex]
by
[tex]$$
x^2 - 4x - 9.
$$[/tex]
Distribute each term in [tex]$14x^5 + 35x^2$[/tex] to every term in [tex]$x^2 - 4x - 9$[/tex].
* Multiply [tex]$14x^5$[/tex] by each term:
[tex]\[
14x^5 \cdot x^2 = 14x^7,
\][/tex]
[tex]\[
14x^5 \cdot (-4x) = -56x^6,
\][/tex]
[tex]\[
14x^5 \cdot (-9) = -126x^5.
\][/tex]
* Multiply [tex]$35x^2$[/tex] by each term:
[tex]\[
35x^2 \cdot x^2 = 35x^4,
\][/tex]
[tex]\[
35x^2 \cdot (-4x) = -140x^3,
\][/tex]
[tex]\[
35x^2 \cdot (-9) = -315x^2.
\][/tex]
Now, combine all the resulting terms:
[tex]$$
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2.
$$[/tex]
This is the product in expanded form.
---
Final Answer:
[tex]$$
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2.
$$[/tex]
[tex]$$
\left(7x^2\right)\left(2x^3+5\right)\left(x^2-4x-9\right).
$$[/tex]
We'll break the process into two main steps.
---
Step 1. Multiply the first two factors
Multiply the two factors:
[tex]$$
7x^2 \quad \text{and} \quad 2x^3 + 5.
$$[/tex]
Distribute [tex]$7x^2$[/tex] over the sum:
[tex]\[
7x^2 \cdot (2x^3) = 14x^5,
\][/tex]
[tex]\[
7x^2 \cdot 5 = 35x^2.
\][/tex]
So their product is:
[tex]$$
14x^5 + 35x^2.
$$[/tex]
---
Step 2. Multiply the result by the third factor
Now multiply the result
[tex]$$
14x^5 + 35x^2
$$[/tex]
by
[tex]$$
x^2 - 4x - 9.
$$[/tex]
Distribute each term in [tex]$14x^5 + 35x^2$[/tex] to every term in [tex]$x^2 - 4x - 9$[/tex].
* Multiply [tex]$14x^5$[/tex] by each term:
[tex]\[
14x^5 \cdot x^2 = 14x^7,
\][/tex]
[tex]\[
14x^5 \cdot (-4x) = -56x^6,
\][/tex]
[tex]\[
14x^5 \cdot (-9) = -126x^5.
\][/tex]
* Multiply [tex]$35x^2$[/tex] by each term:
[tex]\[
35x^2 \cdot x^2 = 35x^4,
\][/tex]
[tex]\[
35x^2 \cdot (-4x) = -140x^3,
\][/tex]
[tex]\[
35x^2 \cdot (-9) = -315x^2.
\][/tex]
Now, combine all the resulting terms:
[tex]$$
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2.
$$[/tex]
This is the product in expanded form.
---
Final Answer:
[tex]$$
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2.
$$[/tex]