College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product?

\[ \left(7x^2\right)\left(2x^3+5\right)\left(x^2-4x-9\right) \]

A. \( 14x^5 - x^4 - 46x^3 - 58x^2 - 20x - 45 \)

B. \( 14x^6 - 56x^5 - 91x^4 - 140x^3 - 315x^2 \)

C. \( 14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2 \)

D. \( 14x^{12} - 182x^6 + 35x^4 - 455x^2 \)

Answer :

We want to simplify the product

[tex]$$
\left(7x^2\right)\left(2x^3+5\right)\left(x^2-4x-9\right).
$$[/tex]

We'll break the process into two main steps.

---

Step 1. Multiply the first two factors

Multiply the two factors:

[tex]$$
7x^2 \quad \text{and} \quad 2x^3 + 5.
$$[/tex]

Distribute [tex]$7x^2$[/tex] over the sum:

[tex]\[
7x^2 \cdot (2x^3) = 14x^5,
\][/tex]
[tex]\[
7x^2 \cdot 5 = 35x^2.
\][/tex]

So their product is:

[tex]$$
14x^5 + 35x^2.
$$[/tex]

---

Step 2. Multiply the result by the third factor

Now multiply the result

[tex]$$
14x^5 + 35x^2
$$[/tex]

by

[tex]$$
x^2 - 4x - 9.
$$[/tex]

Distribute each term in [tex]$14x^5 + 35x^2$[/tex] to every term in [tex]$x^2 - 4x - 9$[/tex].

* Multiply [tex]$14x^5$[/tex] by each term:

[tex]\[
14x^5 \cdot x^2 = 14x^7,
\][/tex]
[tex]\[
14x^5 \cdot (-4x) = -56x^6,
\][/tex]
[tex]\[
14x^5 \cdot (-9) = -126x^5.
\][/tex]

* Multiply [tex]$35x^2$[/tex] by each term:

[tex]\[
35x^2 \cdot x^2 = 35x^4,
\][/tex]
[tex]\[
35x^2 \cdot (-4x) = -140x^3,
\][/tex]
[tex]\[
35x^2 \cdot (-9) = -315x^2.
\][/tex]

Now, combine all the resulting terms:

[tex]$$
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2.
$$[/tex]

This is the product in expanded form.

---

Final Answer:

[tex]$$
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2.
$$[/tex]