College

What is the product?

\[ \left(7x^2\right)\left(2x^3 + 5\right)\left(x^2 - 4x - 9\right) \]

A. \[ 14x^5 - x^4 - 46x^3 - 58x^2 - 20x - 45 \]

B. \[ 14x^6 - 56x^5 - 91x^4 - 140x^3 - 315x^2 \]

C. \[ 14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2 \]

D. \[ 14x^{12} - 182x^6 + 35x^4 - 455x^2 \]

Answer :

Sure! Let's find the product of the three polynomial expressions step-by-step:

Given the expression:

[tex]\[
(7x^2)(2x^3 + 5)(x^2 - 4x - 9)
\][/tex]

We will use the distributive property of multiplication for polynomials, which involves expanding the expression.

### Step-by-Step Expansion:

1. First, multiply [tex]\(7x^2\)[/tex] with each term in the second polynomial [tex]\((2x^3 + 5):

\[
7x^2 \cdot (2x^3 + 5) = 7x^2 \cdot 2x^3 + 7x^2 \cdot 5
\]

This gives us:

\[
14x^5 + 35x^2
\]

2. Next, multiply the result by the third polynomial \((x^2 - 4x - 9):

\[
(14x^5 + 35x^2) \cdot (x^2 - 4x - 9)
\]

3. Expand \(14x^5 \cdot (x^2 - 4x - 9):

\[
14x^5 \cdot x^2 + 14x^5 \cdot (-4x) + 14x^5 \cdot (-9)
\]

Simplifying this, we get:

\[
14x^7 - 56x^6 - 126x^5
\]

4. Now, expand \(35x^2 \cdot (x^2 - 4x - 9):

\[
35x^2 \cdot x^2 + 35x^2 \cdot (-4x) + 35x^2 \cdot (-9)
\]

Simplifying this, we get:

\[
35x^4 - 140x^3 - 315x^2
\]

5. Finally, combine all the terms from steps 3 and 4:

\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\]

### Final Product:

\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\]

Therefore, the product of \(\left(7x^2\right)\left(2x^3 + 5\right)\left(x^2 - 4x- 9\right)\)[/tex] is:

[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]

This matches one of the given options.