College

What is the product?

\[ (7x^2)(2x^3 + 5)(x^2 - 4x - 9) \]

A. \[ 14x^5 - x^4 - 46x^3 - 58x^2 - 20x - 45 \]

B. \[ 14x^6 - 56x^5 - 91x^4 - 140x^3 - 315x^2 \]

C. \[ 14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2 \]

D. \[ 14x^{12} - 182x^6 + 35x^4 - 455x^2 \]

Answer :

To solve the problem of finding the product of the given expression [tex]\(\left(7 x^2\right)\left(2 x^3+5\right)\left(x^2-4 x-9\right)\)[/tex], we will expand it step-by-step and compare it to the provided options.

### Step-by-Step Solution

1. Expression Setup:
The given expression is:
[tex]\[
\left(7 x^2\right)\left(2 x^3 + 5\right)\left(x^2 - 4 x - 9\right)
\][/tex]

2. First Expansion:
Start by multiplying the first two terms:
[tex]\[
7 x^2 \cdot (2 x^3 + 5)
\][/tex]
Distribute [tex]\(7x^2\)[/tex]:
[tex]\[
7 x^2 \cdot 2 x^3 + 7 x^2 \cdot 5 = 14 x^5 + 35 x^2
\][/tex]

3. Next Expansion:
Now take the result from the first expansion and multiply it by the third term:
[tex]\[
(14 x^5 + 35 x^2) \cdot (x^2 - 4 x - 9)
\][/tex]

Distribute each term in the first polynomial over each term in the second polynomial:
[tex]\[
14 x^5 \cdot x^2 + 14 x^5 \cdot (-4x) + 14 x^5 \cdot (-9) + 35 x^2 \cdot x^2 + 35 x^2 \cdot (-4x) + 35 x^2 \cdot (-9)
\][/tex]

4. Perform Each Multiplication:
- [tex]\(14 x^5 \cdot x^2 = 14 x^7\)[/tex]
- [tex]\(14 x^5 \cdot (-4x) = -56 x^6\)[/tex]
- [tex]\(14 x^5 \cdot (-9) = -126 x^5\)[/tex]
- [tex]\(35 x^2 \cdot x^2 = 35 x^4\)[/tex]
- [tex]\(35 x^2 \cdot (-4x) = -140 x^3\)[/tex]
- [tex]\(35 x^2 \cdot (-9) = -315 x^2\)[/tex]

5. Combine All Terms:
Add together all the polynomial terms obtained:
[tex]\[
14 x^7 - 56 x^6 - 126 x^5 + 35 x^4 - 140 x^3 - 315 x^2
\][/tex]

### Conclusion
The expanded expression matches one of the provided answers. Therefore, the correct product of the expression is:
[tex]\[
\boxed{14 x^7 - 56 x^6 - 126 x^5 + 35 x^4 - 140 x^3 - 315 x^2}
\][/tex]