High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ List all of the possible rational zeros of each function.

23. [tex]f(x) = 3x^4 - x^3 + 4[/tex]

24. [tex]f(x) = x^4 + 7x^3 - 15[/tex]

25. [tex]f(x) = x^3 - 6x^2 - 8x + 24[/tex]

Answer :

We can use the Rational Root Theorem. This theorem tells us that any rational zero of a polynomial

[tex]$$
a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0
$$[/tex]

must be of the form

[tex]$$
\frac{p}{q},
$$[/tex]

where [tex]$p$[/tex] is a factor of the constant term [tex]$a_0$[/tex] and [tex]$q$[/tex] is a factor of the leading coefficient [tex]$a_n$[/tex]. We now apply this to each function.

–––––––––––––––––––––––––––––––––––
1. For
[tex]$$
f(x) = 3x^4 - x^3 + 4:
$$[/tex]

- The constant term is [tex]$4$[/tex]. Its positive factors are [tex]$1$[/tex], [tex]$2$[/tex], and [tex]$4$[/tex], so the possible values of [tex]$p$[/tex] are
[tex]$$
\pm 1,\, \pm 2,\, \pm 4.
$$[/tex]

- The leading coefficient is [tex]$3$[/tex]. Its positive factors are [tex]$1$[/tex] and [tex]$3$[/tex], so the possible values of [tex]$q$[/tex] are
[tex]$$
\pm 1,\, \pm 3.
$$[/tex]

Thus, the possible rational zeros are obtained by taking each factor of [tex]$4$[/tex] divided by each factor of [tex]$3$[/tex]:

[tex]$$
\pm 1,\ \pm 2,\ \pm 4,\ \pm \frac{1}{3},\ \pm \frac{2}{3},\ \pm \frac{4}{3}.
$$[/tex]

Writing them in increasing order (when expressed as decimals):

[tex]$$
-4,\ -2,\ -\frac{4}{3},\ -1,\ -\frac{2}{3},\ -\frac{1}{3},\ \frac{1}{3},\ \frac{2}{3},\ 1,\ \frac{4}{3},\ 2,\ 4.
$$[/tex]

–––––––––––––––––––––––––––––––––––
2. For
[tex]$$
f(x) = x^4 + 7x^3 - 15:
$$[/tex]

- The constant term is [tex]$-15$[/tex]. Its factors are [tex]$1$[/tex], [tex]$3$[/tex], [tex]$5$[/tex], and [tex]$15$[/tex], so the possible values of [tex]$p$[/tex] are
[tex]$$
\pm 1,\, \pm 3,\, \pm 5,\, \pm 15.
$$[/tex]

- The leading coefficient is [tex]$1$[/tex]. Its only factors are [tex]$1$[/tex] (or [tex]$-1$[/tex]), so the possible values of [tex]$q$[/tex] are
[tex]$$
\pm 1.
$$[/tex]

Thus, the possible rational zeros are

[tex]$$
\pm 1,\ \pm 3,\ \pm 5,\ \pm 15.
$$[/tex]

Sorted from smallest to largest:

[tex]$$
-15,\ -5,\ -3,\ -1,\ 1,\ 3,\ 5,\ 15.
$$[/tex]

–––––––––––––––––––––––––––––––––––
3. For
[tex]$$
f(x)=x^3-6x^2-8x+24:
$$[/tex]

- The constant term is [tex]$24$[/tex]. Its factors are [tex]$1$[/tex], [tex]$2$[/tex], [tex]$3$[/tex], [tex]$4$[/tex], [tex]$6$[/tex], [tex]$8$[/tex], [tex]$12$[/tex], and [tex]$24$[/tex], so the possible values of [tex]$p$[/tex] are
[tex]$$
\pm 1,\, \pm 2,\, \pm 3,\, \pm 4,\, \pm 6,\, \pm 8,\, \pm 12,\, \pm 24.
$$[/tex]

- The leading coefficient is [tex]$1$[/tex], whose only factors are [tex]$1$[/tex] (and [tex]$-1$[/tex]), so the possible value of [tex]$q$[/tex] is
[tex]$$
\pm 1.
$$[/tex]

Thus, the possible rational zeros are

[tex]$$
\pm 1,\ \pm 2,\ \pm 3,\ \pm 4,\ \pm 6,\ \pm 8,\ \pm 12,\ \pm 24.
$$[/tex]

When arranged in order:

[tex]$$
-24,\ -12,\ -8,\ -6,\ -4,\ -3,\ -2,\ -1,\ 1,\ 2,\ 3,\ 4,\ 6,\ 8,\ 12,\ 24.
$$[/tex]

–––––––––––––––––––––––––––––––––––
Summary of the answers:

[tex]\[
\begin{array}{ll}
\textbf{23. } f(x)=3x^4-x^3+4: & \pm 1,\ \pm 2,\ \pm 4,\ \pm \frac{1}{3},\ \pm \frac{2}{3},\ \pm \frac{4}{3} \\
\textbf{24. } f(x)=x^4+7x^3-15: & \pm 1,\ \pm 3,\ \pm 5,\ \pm 15 \\
\textbf{25. } f(x)=x^3-6x^2-8x+24: & \pm 1,\ \pm 2,\ \pm 3,\ \pm 4,\ \pm 6,\ \pm 8,\ \pm 12,\ \pm 24
\end{array}
\][/tex]

These are all the possible rational zeros for the given functions.