High School

What is the product?

1. [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex]

A. [tex]\(-8x^2 - 8x - 36xy^2 - 27y^2\)[/tex]
B. [tex]\(-14x^2 - 36xy^2 + 27y^2\)[/tex]
C. [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]
D. [tex]\(14x^2 + 36xy^2 + 27y^2\)[/tex]

Answer :

To find the product [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex], let's break it down step by step:

1. Distribute each term:
- First, take [tex]\(-2x\)[/tex] and distribute it to both terms inside the second parenthesis:
- [tex]\((-2x) \times (-4x) = 8x^2\)[/tex]
- [tex]\((-2x) \times (-3) = 6x\)[/tex]

2. Distribute each term continued:
- Now, take [tex]\(-9y^2\)[/tex] and distribute it to both terms inside the second parenthesis:
- [tex]\((-9y^2) \times (-4x) = 36xy^2\)[/tex]
- [tex]\((-9y^2) \times (-3) = 27y^2\)[/tex]

3. Combine all the products:
- The results from the distributions give us:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

This final expression [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex] is the expanded form of the product of [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex].