Answer :
To find the gravitational potential energy, we use the formula
[tex]$$
PE = m \cdot g \cdot h,
$$[/tex]
where
- [tex]$m$[/tex] is the mass,
- [tex]$g$[/tex] is the acceleration due to gravity,
- [tex]$h$[/tex] is the height.
Given:
- [tex]$m = 25 \text{ kg}$[/tex],
- [tex]$g = 9.8 \text{ m/s}^2$[/tex],
- [tex]$h = 3 \text{ m}$[/tex].
Step 1: Calculate the weight (force) acting on the bicycle:
[tex]$$
\text{Weight} = m \cdot g = 25 \times 9.8 = 245 \text{ N}.
$$[/tex]
Step 2: Compute the potential energy by multiplying the weight by the height:
[tex]$$
PE = m \cdot g \cdot h = 25 \times 9.8 \times 3 = 735 \text{ Joules}.
$$[/tex]
Thus, the potential energy of the bicycle is [tex]$\boxed{735 \text{ J}}$[/tex].
[tex]$$
PE = m \cdot g \cdot h,
$$[/tex]
where
- [tex]$m$[/tex] is the mass,
- [tex]$g$[/tex] is the acceleration due to gravity,
- [tex]$h$[/tex] is the height.
Given:
- [tex]$m = 25 \text{ kg}$[/tex],
- [tex]$g = 9.8 \text{ m/s}^2$[/tex],
- [tex]$h = 3 \text{ m}$[/tex].
Step 1: Calculate the weight (force) acting on the bicycle:
[tex]$$
\text{Weight} = m \cdot g = 25 \times 9.8 = 245 \text{ N}.
$$[/tex]
Step 2: Compute the potential energy by multiplying the weight by the height:
[tex]$$
PE = m \cdot g \cdot h = 25 \times 9.8 \times 3 = 735 \text{ Joules}.
$$[/tex]
Thus, the potential energy of the bicycle is [tex]$\boxed{735 \text{ J}}$[/tex].