Answer :
To find the gravitational potential energy of the bicycle, we use the formula
[tex]$$
PE = mgh,
$$[/tex]
where:
- [tex]$m$[/tex] is the mass in kilograms,
- [tex]$g$[/tex] is the acceleration due to gravity in meters per second squared,
- [tex]$h$[/tex] is the height in meters.
Given:
- [tex]$m = 25\,\text{kg}$[/tex],
- [tex]$g = 9.8\,\text{m/s}^2$[/tex],
- [tex]$h = 3\,\text{m}$[/tex],
we substitute these values into the formula:
[tex]$$
PE = 25 \times 9.8 \times 3.
$$[/tex]
First, calculate the product of [tex]$25$[/tex] and [tex]$9.8$[/tex]:
[tex]$$
25 \times 9.8 = 245.
$$[/tex]
Then, multiply by [tex]$3$[/tex]:
[tex]$$
245 \times 3 = 735.
$$[/tex]
Therefore, the potential energy of the bicycle is
[tex]$$
PE = 735 \text{ Joules}.
$$[/tex]
[tex]$$
PE = mgh,
$$[/tex]
where:
- [tex]$m$[/tex] is the mass in kilograms,
- [tex]$g$[/tex] is the acceleration due to gravity in meters per second squared,
- [tex]$h$[/tex] is the height in meters.
Given:
- [tex]$m = 25\,\text{kg}$[/tex],
- [tex]$g = 9.8\,\text{m/s}^2$[/tex],
- [tex]$h = 3\,\text{m}$[/tex],
we substitute these values into the formula:
[tex]$$
PE = 25 \times 9.8 \times 3.
$$[/tex]
First, calculate the product of [tex]$25$[/tex] and [tex]$9.8$[/tex]:
[tex]$$
25 \times 9.8 = 245.
$$[/tex]
Then, multiply by [tex]$3$[/tex]:
[tex]$$
245 \times 3 = 735.
$$[/tex]
Therefore, the potential energy of the bicycle is
[tex]$$
PE = 735 \text{ Joules}.
$$[/tex]