Answer :
To solve the expression [tex](\frac{1}{2} + \frac{2}{3}) / (\frac{14}{15})[/tex], follow these steps:
Simplify the Numerator: Start by adding the fractions in the numerator, [tex]\frac{1}{2} + \frac{2}{3}[/tex]. To do this, first find a common denominator:
The denominators are 2 and 3. The least common denominator (LCD) is 6.
Convert [tex]\frac{1}{2}[/tex] to [tex]\frac{3}{6}[/tex] and [tex]\frac{2}{3}[/tex] to [tex]\frac{4}{6}[/tex].
Now, add the fractions: [tex]\frac{3}{6} + \frac{4}{6} = \frac{7}{6}[/tex].
Divide by the Denominator: Now divide the result by [tex]\frac{14}{15}[/tex]:
This is equivalent to multiplying by the reciprocal of [tex]\frac{14}{15}[/tex], which is [tex]\frac{15}{14}[/tex].
So, calculate [tex]\frac{7}{6} \times \frac{15}{14}[/tex].
Multiply the Fractions: To multiply fractions, multiply the numerators and then the denominators:
Numerators: [tex]7 \times 15 = 105[/tex].
Denominators: [tex]6 \times 14 = 84[/tex].
Therefore, [tex]\frac{7}{6} \times \frac{15}{14} = \frac{105}{84}[/tex].
Simplify the Result: Simplify [tex]\frac{105}{84}[/tex] to its lowest terms:
Find the greatest common divisor (GCD) of 105 and 84, which is 21.
Divide the numerator and denominator by 21.
[tex]\frac{105}{84} = \frac{105 \div 21}{84 \div 21} = \frac{5}{4}[/tex].
So, the simplified answer is [tex]\frac{5}{4}[/tex] or [tex]1.25[/tex] when expressed as a decimal.
In conclusion, the result of the expression [tex](\frac{1}{2} + \frac{2}{3}) / (\frac{14}{15})[/tex] is [tex]\frac{5}{4}[/tex].