Answer :
To find the potential energy, we use the formula
[tex]$$
PE = mgh,
$$[/tex]
where:
- [tex]$m$[/tex] is the mass,
- [tex]$g$[/tex] is the gravitational acceleration, and
- [tex]$h$[/tex] is the height.
Given:
- [tex]$m = 25 \, \text{kg}$[/tex],
- [tex]$g = 9.8 \, \text{m/s}^2$[/tex], and
- [tex]$h = 3 \, \text{m}$[/tex].
Step 1: Multiply the mass and gravitational acceleration:
[tex]$$
25 \times 9.8 = 245.
$$[/tex]
Step 2: Multiply this result by the height:
[tex]$$
245 \times 3 = 735.
$$[/tex]
Thus, the potential energy is
[tex]$$
PE = 735 \, \text{J}.
$$[/tex]
So, the correct answer is [tex]$\boxed{735 \, \text{J}}$[/tex].
[tex]$$
PE = mgh,
$$[/tex]
where:
- [tex]$m$[/tex] is the mass,
- [tex]$g$[/tex] is the gravitational acceleration, and
- [tex]$h$[/tex] is the height.
Given:
- [tex]$m = 25 \, \text{kg}$[/tex],
- [tex]$g = 9.8 \, \text{m/s}^2$[/tex], and
- [tex]$h = 3 \, \text{m}$[/tex].
Step 1: Multiply the mass and gravitational acceleration:
[tex]$$
25 \times 9.8 = 245.
$$[/tex]
Step 2: Multiply this result by the height:
[tex]$$
245 \times 3 = 735.
$$[/tex]
Thus, the potential energy is
[tex]$$
PE = 735 \, \text{J}.
$$[/tex]
So, the correct answer is [tex]$\boxed{735 \, \text{J}}$[/tex].