Answer :
To find the potential energy of a 25 kg bicycle resting at the top of a hill 3 meters high, we can use the formula for gravitational potential energy, which is:
[tex]\[ PE = m \cdot g \cdot h \][/tex]
where:
- [tex]\( PE \)[/tex] is the potential energy,
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex]),
- [tex]\( h \)[/tex] is the height (in meters).
Given:
- The mass [tex]\( m = 25 \, \text{kg} \)[/tex],
- The gravitational acceleration [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex],
- The height [tex]\( h = 3 \, \text{m} \)[/tex].
Substitute these values into the formula:
[tex]\[ PE = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
Multiplying these together:
[tex]\[ PE = 25 \times 9.8 \times 3 \][/tex]
[tex]\[ PE = 735 \, \text{J} \][/tex]
Therefore, the potential energy of the bicycle is 735 J.
[tex]\[ PE = m \cdot g \cdot h \][/tex]
where:
- [tex]\( PE \)[/tex] is the potential energy,
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex]),
- [tex]\( h \)[/tex] is the height (in meters).
Given:
- The mass [tex]\( m = 25 \, \text{kg} \)[/tex],
- The gravitational acceleration [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex],
- The height [tex]\( h = 3 \, \text{m} \)[/tex].
Substitute these values into the formula:
[tex]\[ PE = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
Multiplying these together:
[tex]\[ PE = 25 \times 9.8 \times 3 \][/tex]
[tex]\[ PE = 735 \, \text{J} \][/tex]
Therefore, the potential energy of the bicycle is 735 J.