Answer :
To find the potential energy of the bicycle, we can use the formula for gravitational potential energy:
[tex]\[ PE = m \times g \times h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the bicycle (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex] on Earth),
- [tex]\( h \)[/tex] is the height of the hill (in meters).
Given the values:
- Mass ([tex]\( m \)[/tex]) = 25 kg
- Height ([tex]\( h \)[/tex]) = 3 m
- Gravity ([tex]\( g \)[/tex]) = 9.8 m/s²
We substitute these values into the formula:
[tex]\[ PE = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
When we perform the multiplication:
[tex]\[ PE = 25 \times 9.8 \times 3 \][/tex]
[tex]\[ PE = 735 \, \text{Joules} \][/tex]
Therefore, the potential energy of the bicycle at the top of the hill is 735 Joules.
From the options given, the correct answer is:
735 J
[tex]\[ PE = m \times g \times h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the bicycle (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex] on Earth),
- [tex]\( h \)[/tex] is the height of the hill (in meters).
Given the values:
- Mass ([tex]\( m \)[/tex]) = 25 kg
- Height ([tex]\( h \)[/tex]) = 3 m
- Gravity ([tex]\( g \)[/tex]) = 9.8 m/s²
We substitute these values into the formula:
[tex]\[ PE = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
When we perform the multiplication:
[tex]\[ PE = 25 \times 9.8 \times 3 \][/tex]
[tex]\[ PE = 735 \, \text{Joules} \][/tex]
Therefore, the potential energy of the bicycle at the top of the hill is 735 Joules.
From the options given, the correct answer is:
735 J