Answer :
To find the pH of a solution with a given concentration of hydrogen ions [tex]\([H^+]\)[/tex], you can use the formula:
[tex]\[ \text{pH} = -\log_{10}[H^+] \][/tex]
For this problem, the concentration of [tex]\(H^+\)[/tex] ions is given as [tex]\(2.3 \times 10^{-2} \, \text{mol/L}\)[/tex].
1. First, identify the concentration: [tex]\([H^+] = 2.3 \times 10^{-2} \, \text{mol/L}\)[/tex].
2. Use the formula to calculate pH:
[tex]\[ \text{pH} = -\log_{10}(2.3 \times 10^{-2}) \][/tex]
3. Calculate the logarithm:
- First, find the logarithm of [tex]\(2.3\)[/tex], which is approximately 0.3617.
- Then, find the logarithm of [tex]\(10^{-2}\)[/tex], which is [tex]\(-2\)[/tex].
4. Combine these values:
[tex]\[ -\log_{10}(2.3 \times 10^{-2}) = -(\log_{10}(2.3) + \log_{10}(10^{-2})) \][/tex]
[tex]\[ = -(0.3617 - 2) \][/tex]
[tex]\[ = 1.6383 \][/tex]
Thus, the pH of the solution is approximately 1.64 (rounded to two decimal places).
The correct answer is option D. [tex]\(1.64\)[/tex].
[tex]\[ \text{pH} = -\log_{10}[H^+] \][/tex]
For this problem, the concentration of [tex]\(H^+\)[/tex] ions is given as [tex]\(2.3 \times 10^{-2} \, \text{mol/L}\)[/tex].
1. First, identify the concentration: [tex]\([H^+] = 2.3 \times 10^{-2} \, \text{mol/L}\)[/tex].
2. Use the formula to calculate pH:
[tex]\[ \text{pH} = -\log_{10}(2.3 \times 10^{-2}) \][/tex]
3. Calculate the logarithm:
- First, find the logarithm of [tex]\(2.3\)[/tex], which is approximately 0.3617.
- Then, find the logarithm of [tex]\(10^{-2}\)[/tex], which is [tex]\(-2\)[/tex].
4. Combine these values:
[tex]\[ -\log_{10}(2.3 \times 10^{-2}) = -(\log_{10}(2.3) + \log_{10}(10^{-2})) \][/tex]
[tex]\[ = -(0.3617 - 2) \][/tex]
[tex]\[ = 1.6383 \][/tex]
Thus, the pH of the solution is approximately 1.64 (rounded to two decimal places).
The correct answer is option D. [tex]\(1.64\)[/tex].