Answer :
We are given the formula for force:
[tex]$$
F = m \cdot a
$$[/tex]
where:
- [tex]$F$[/tex] is the force,
- [tex]$m$[/tex] is the mass,
- [tex]$a$[/tex] is the acceleration.
The problem states that [tex]$F = 200$[/tex] N and [tex]$a = 8$[/tex] m/s[tex]$^2$[/tex]. We want to find the mass [tex]$m$[/tex]. Rearranging the formula to solve for [tex]$m$[/tex], we have:
[tex]$$
m = \frac{F}{a}
$$[/tex]
Substitute the given values into the equation:
[tex]$$
m = \frac{200\ \text{N}}{8\ \text{m/s}^2} = 25\ \text{kg}
$$[/tex]
Thus, the mass of the crate is [tex]$\boxed{25\ \text{kg}}$[/tex].
[tex]$$
F = m \cdot a
$$[/tex]
where:
- [tex]$F$[/tex] is the force,
- [tex]$m$[/tex] is the mass,
- [tex]$a$[/tex] is the acceleration.
The problem states that [tex]$F = 200$[/tex] N and [tex]$a = 8$[/tex] m/s[tex]$^2$[/tex]. We want to find the mass [tex]$m$[/tex]. Rearranging the formula to solve for [tex]$m$[/tex], we have:
[tex]$$
m = \frac{F}{a}
$$[/tex]
Substitute the given values into the equation:
[tex]$$
m = \frac{200\ \text{N}}{8\ \text{m/s}^2} = 25\ \text{kg}
$$[/tex]
Thus, the mass of the crate is [tex]$\boxed{25\ \text{kg}}$[/tex].