Answer :
To find the mass of the crate, we can use the formula for force:
[tex]\[ F = ma \][/tex]
In this formula:
- [tex]\( F \)[/tex] represents the force applied, measured in Newtons (N).
- [tex]\( m \)[/tex] is the mass of the object, measured in kilograms (kg).
- [tex]\( a \)[/tex] is the acceleration, measured in meters per second squared ([tex]\( m/s^2 \)[/tex]).
We need to find the mass ([tex]\( m \)[/tex]), so we can rearrange the formula to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, let's plug in the given values:
- The force ([tex]\( F \)[/tex]) is 200 N.
- The acceleration ([tex]\( a \)[/tex]) is [tex]\( 8 \, m/s^2 \)[/tex].
Calculate the mass ([tex]\( m \)[/tex]) using the rearranged formula:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, m/s^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is 25 kg.
[tex]\[ F = ma \][/tex]
In this formula:
- [tex]\( F \)[/tex] represents the force applied, measured in Newtons (N).
- [tex]\( m \)[/tex] is the mass of the object, measured in kilograms (kg).
- [tex]\( a \)[/tex] is the acceleration, measured in meters per second squared ([tex]\( m/s^2 \)[/tex]).
We need to find the mass ([tex]\( m \)[/tex]), so we can rearrange the formula to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, let's plug in the given values:
- The force ([tex]\( F \)[/tex]) is 200 N.
- The acceleration ([tex]\( a \)[/tex]) is [tex]\( 8 \, m/s^2 \)[/tex].
Calculate the mass ([tex]\( m \)[/tex]) using the rearranged formula:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, m/s^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is 25 kg.