Answer :
To find the mass of the crate, we start with Newton's second law:
[tex]$$
F = m \cdot a
$$[/tex]
where
[tex]$F$[/tex] is the force applied,
[tex]$m$[/tex] is the mass, and
[tex]$a$[/tex] is the acceleration.
We are given:
[tex]$$
F = 200 \text{ N}, \quad a = 8 \text{ m/s}^2.
$$[/tex]
We can solve for the mass [tex]$m$[/tex] by rearranging the equation:
[tex]$$
m = \frac{F}{a}
$$[/tex]
Substitute the given values:
[tex]$$
m = \frac{200 \text{ N}}{8 \text{ m/s}^2} = 25 \text{ kg}
$$[/tex]
Thus, the mass of the crate is [tex]$\boxed{25 \text{ kg}}$[/tex].
[tex]$$
F = m \cdot a
$$[/tex]
where
[tex]$F$[/tex] is the force applied,
[tex]$m$[/tex] is the mass, and
[tex]$a$[/tex] is the acceleration.
We are given:
[tex]$$
F = 200 \text{ N}, \quad a = 8 \text{ m/s}^2.
$$[/tex]
We can solve for the mass [tex]$m$[/tex] by rearranging the equation:
[tex]$$
m = \frac{F}{a}
$$[/tex]
Substitute the given values:
[tex]$$
m = \frac{200 \text{ N}}{8 \text{ m/s}^2} = 25 \text{ kg}
$$[/tex]
Thus, the mass of the crate is [tex]$\boxed{25 \text{ kg}}$[/tex].