Answer :
We are given the relation between force, mass, and acceleration:
[tex]$$
F = m \cdot a
$$[/tex]
To find the mass ([tex]$m$[/tex]), we can rearrange the formula:
[tex]$$
m = \frac{F}{a}
$$[/tex]
Here, the force is [tex]$F = 200 \, \text{N}$[/tex] and the acceleration is [tex]$a = 8 \, \text{m/s}^2$[/tex]. Substituting these values, we have:
[tex]$$
m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} = 25 \, \text{kg}
$$[/tex]
Thus, the mass of the crate is [tex]$\boxed{25 \, \text{kg}}$[/tex].
[tex]$$
F = m \cdot a
$$[/tex]
To find the mass ([tex]$m$[/tex]), we can rearrange the formula:
[tex]$$
m = \frac{F}{a}
$$[/tex]
Here, the force is [tex]$F = 200 \, \text{N}$[/tex] and the acceleration is [tex]$a = 8 \, \text{m/s}^2$[/tex]. Substituting these values, we have:
[tex]$$
m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} = 25 \, \text{kg}
$$[/tex]
Thus, the mass of the crate is [tex]$\boxed{25 \, \text{kg}}$[/tex].