Answer :
We begin with Newton's second law:
[tex]$$
F = m \cdot a
$$[/tex]
where
[tex]\( F \)[/tex] is the force,
[tex]\( m \)[/tex] is the mass, and
[tex]\( a \)[/tex] is the acceleration.
We are given:
- [tex]\( F = 200 \, \text{N} \)[/tex]
- [tex]\( a = 8 \, \text{m/s}^2 \)[/tex]
To find the mass, we rearrange the formula:
[tex]$$
m = \frac{F}{a}
$$[/tex]
Substituting the given values:
[tex]$$
m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} = 25 \, \text{kg}
$$[/tex]
Thus, the mass of the crate is [tex]\(\boxed{25 \, \text{kg}}\)[/tex].
[tex]$$
F = m \cdot a
$$[/tex]
where
[tex]\( F \)[/tex] is the force,
[tex]\( m \)[/tex] is the mass, and
[tex]\( a \)[/tex] is the acceleration.
We are given:
- [tex]\( F = 200 \, \text{N} \)[/tex]
- [tex]\( a = 8 \, \text{m/s}^2 \)[/tex]
To find the mass, we rearrange the formula:
[tex]$$
m = \frac{F}{a}
$$[/tex]
Substituting the given values:
[tex]$$
m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} = 25 \, \text{kg}
$$[/tex]
Thus, the mass of the crate is [tex]\(\boxed{25 \, \text{kg}}\)[/tex].