Answer :
Certainly! Let's find out the mass of the crate using the relationship between force, mass, and acceleration.
We are given:
- Force ([tex]\( F \)[/tex]) = 200 Newtons
- Acceleration ([tex]\( a \)[/tex]) = 8 m/s²
We need to find the mass ([tex]\( m \)[/tex]) of the crate. We can use the formula:
[tex]\[
F = m \times a
\][/tex]
To find the mass, we rearrange the formula to solve for [tex]\( m \)[/tex]:
[tex]\[
m = \frac{F}{a}
\][/tex]
Now, substitute the given values into the equation:
[tex]\[
m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2}
\][/tex]
When you divide 200 by 8, you get:
[tex]\[
m = 25 \, \text{kg}
\][/tex]
Therefore, the mass of the crate is [tex]\( 25 \, \text{kg} \)[/tex].
We are given:
- Force ([tex]\( F \)[/tex]) = 200 Newtons
- Acceleration ([tex]\( a \)[/tex]) = 8 m/s²
We need to find the mass ([tex]\( m \)[/tex]) of the crate. We can use the formula:
[tex]\[
F = m \times a
\][/tex]
To find the mass, we rearrange the formula to solve for [tex]\( m \)[/tex]:
[tex]\[
m = \frac{F}{a}
\][/tex]
Now, substitute the given values into the equation:
[tex]\[
m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2}
\][/tex]
When you divide 200 by 8, you get:
[tex]\[
m = 25 \, \text{kg}
\][/tex]
Therefore, the mass of the crate is [tex]\( 25 \, \text{kg} \)[/tex].