Answer :
To find the mass of the crate, we can use the formula for force:
[tex]\[ F = ma \][/tex]
where [tex]\( F \)[/tex] is the force applied, [tex]\( m \)[/tex] is the mass, and [tex]\( a \)[/tex] is the acceleration.
We are given:
- [tex]\( F = 200 \, \text{N} \)[/tex] (force)
- [tex]\( a = 8 \, \text{m/s}^2 \)[/tex] (acceleration)
We need to find the mass [tex]\( m \)[/tex].
To do this, we rearrange the formula to solve for mass [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, plug in the given values:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is [tex]\( 25 \, \text{kg} \)[/tex].
[tex]\[ F = ma \][/tex]
where [tex]\( F \)[/tex] is the force applied, [tex]\( m \)[/tex] is the mass, and [tex]\( a \)[/tex] is the acceleration.
We are given:
- [tex]\( F = 200 \, \text{N} \)[/tex] (force)
- [tex]\( a = 8 \, \text{m/s}^2 \)[/tex] (acceleration)
We need to find the mass [tex]\( m \)[/tex].
To do this, we rearrange the formula to solve for mass [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, plug in the given values:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is [tex]\( 25 \, \text{kg} \)[/tex].